Инженерный журнал: наука и инновацииЭЛЕКТРОННОЕ НАУЧНО-ТЕХНИЧЕСКОЕ ИЗДАНИЕ
свидетельство о регистрации СМИ Эл № ФС77-53688 от 17 апреля 2013 г. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Статья

Теплофизические свойства смесей благородных газов с низкими числами Прандтля

Опубликовано: 15.03.2019

Авторы: Егоров К.С., Степанова Л.В.

Опубликовано в выпуске: #3(87)/2019

DOI: 10.18698/2308-6033-2019-3-1858

Раздел: Авиационная и ракетно-космическая техника | Рубрика: Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов

Проанализированы результаты исследований, связанных с изучением термодинамических (плотности, теплоемкости, энтальпии, коэффициента сжимаемости) и теплофизических (теплопроводности и вязкости) свойств благородных газов и их смесей, которые представляют собой основное рабочее тело при использовании в перспективных замкнутых газотурбинных установках космического назначения. Эти энергоустановки можно применять в разных космических приложениях: беспилотных космических аппаратах, спутниках связи и пилотируемой экспедиции на Марс. Рассмотрены исследования по термодинамическим и теплофизическим свойствам благородных газов и их смесей. Выявлено, что в настоящее время уже накоплено достаточно экспериментальных данных о свойствах как отдельных инертных газов, так и их смесей. Использование этой информации позволило построить расчетные модели на основе кинетической теории газов и вириального уравнения состояния для реальных газов, которые дают возможность рассчитывать необходимые теплофизические параметры. Показано, что в расчетах и при проектировании замкнутых газотурбинных установок следует учитывать изменение показателя адиабаты и числа Прандтля для смесей благородных газов, а при приближении рабочих параметров к линии насыщения ксенона – увеличение погрешности расчетных зависимостей


Литература
[1] Leontiev A.I., Samsonov V.L., Surovtsev I.G., Katorgin B.I., Chvanov V.K., Kashkarov A.M. Closed brayton energy conversion system of the solar or nuclear power for manned martian mission electric thrusters power source. Proceeding of 35th Intersociety Energy Conversion Engineering Conference and Exhibit 2000. Las Vegas, NV, July 24–28, 2000, pp. 1103–1110.
[2] Арбеков А.Н., Леонтьев А.И., Самсонов В.Л., Суровцев И.Г., Каторгин Б.И., Чванов В.К., Кашкаров А.М., Елисеев Ю.С., Трдатьян С.А., Бабаев И.Г. Безъядерная энергетика пилотируемой экспедиции на Марс. Известия Российской академии наук. Энергетика, 2002, № 4, с. 3–12.
[3] Arbekov A.N. Selection of the working medium for 6- to 12-kw closed organic-fuel-powered gas-turbine plants. High Temperature, 2014, vol. 52, no. 1, pp. 121–125.
[4] Арбеков А.Н., Леонтьев А.И. Развитие космических газотурбинных установок в работах В.Л. Самсонова. Труды МАИ, 2011, № 43, с. 1–13. URL: https://mai.ru/upload/iblock/c02/razvitie-kosmicheskikh-gazoturbinnykh-ustanovok-v-rabotakh-v.l.-samsonova.pdf (дата обращения 05.02.2018).
[5] Арбеков А.Н. Автономная долгоресурсная малообслуживаемая замкнутая газотурбинная установка, работающая на органическом топливе. Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение, 2012, № 3–2 (34), с. 307–312.
[6] Arbekov A.N. Selecting a thermodynamic cycle for the closed gas-turbine power plant of spacecraft in order to minimize surface of the cooler-radiator. High Temperature, 2014, vol. 52, no. 4. pp. 584–587.
[7] Арбеков А.Н., Новицкий Б.Б. Экспериментальное исследование малорасходного центробежного компрессора замкнутой газотурбинной установки. Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение, 2014, № 5–2 (47), с. 42–47.
[8] Novitskiy B.B., Arbekov A.N. Calculation characteristics of centrifugal compressor operates on a mixture of gases. Proceedings of the 18th International Conference on the Methods of Aerophysical Research (ICMAR 2016). Perm, June 27–July 03, 2016, P. 030089. DOI: 10.1063/1.4964031
[9] Егоров К.С. Экспериментальное исследование характеристик пластинчато-ребристых высококомпактных поверхностей теплообмена. Труды МАИ, 2012, № 52, с. 1–8. URL: http://trudymai.ru/published.php?ID=29545 (дата обращения 05.02.2016).
[10] Егоров К.С., Щеголев Н.Л. Исследование характеристик высококомпактных пластинчато-ребристых поверхностей теплообмена со смещенным ребром. Наука и образование: научное издание МГТУ им. Н.Э. Баумана, 2012, № 6, с. 351–362. URL: http://technomag.bmstu.ru/doc/431788.html (дата обращения 05.02.2016).
[11] Арбеков А.Н., Новицкий Б.Б. Разработка макетного образца космической замкнутой газотурбинной установки. Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение, 2014, № 5–2 (47), c. 35–41.
[12] Mason L.S., Shaltens R.K., Dolce J.L., Cataldo R.L. Status of Brayton cycle power conversion development at NASA GRC. AIP Conference Proceedings 608. EI-Genk M.S., ed. Space Technology and Applications International Forum–2002. Albuquerque, New Mexico, 3–6 February, 2002, pp. 865–871. DOI: 10.1063/1.1449813
[13] Lipinski R.J, Wright S.A., Lenard R.X., Harms G.A. A gas-cooled reactor surface power system. AIP Conference Proceedings 458. EI-Genk M.S., ed. Space Technology and Applications International Forum–1999. Albuquerque, New Mexico, 31 January – 4 February, 1999, pp. 1470–1475. DOI: 10.1063/1.57544
[14] Lenard R.X., Binder A.B. Power system requirements and concepts for a commercially viable lunar base architecture. AIP Conference Proceedings 458. EI-Genk M.S., ed. Space Technology and Applications International Forum–1999. Albuquerque, New Mexico, 31 January – 4 February, 1999, pp. 1647–1652. DOI: 10.1063/1.57567
[15] Mason L. S. Surface nuclear power for human Mars missions. AIP Conference Proceedings 458. EI- Genk M.S., ed. Space Technology and Applications International Forum–1999. Albuquerque, New Mexico, 31 January – 4 February, 1999, pp. 1464–1469. DOI: 10.1063/1.57736
[16] Lipinski R.J., Wright S.A., Dorsey D.J., Peters C.D., Brown N., Williamson J., Jablonski J. A Gas-Cooled Reactor Closed-Brayton Cycle Demonstration with Nuclear Heating. AIP Conference Proceedings 746. EI-Genk M.S., ed. Space Technology and Applications International Forum–2005. Albuquerque, New Mexico, 13–17 February, 2005, pp. 437–448. DOI: 10.1063/1.1867160
[17] Mason L.S. A Comparison of Fission Power System Options for Lunar and Mars Surface Applications. AIP Conference Proceedings 813. EI-Genk M.S., ed. Space Technology and Applications International Forum–2006. Albuquerque, New Mexico, 12–16 February, 2006, pp. 270–280. DOI: 10.1063/1.2169203
[18] Zagarola M.V., Swift W.L., McCormick J.A., Izenson M.G. Miniature Turbo-Brayton Technologies for Space-Borne Thermal-to-Electric Power Converters. AIP Conference Proceedings 608. EI-Genk M.S., ed. Space Technology and Applications International Forum–2002. Albuquerque, New Mexico, 3–6 Feb-ruary, 2002, pp. 929–938. DOI: 10.1063/1.1449821
[19] Zagarola M.V., Crowley C.J., Swift W.L. Developments in Turbo-Brayton Power Converters. AIP Conference Proceedings 654. EI-Genk M.S., ed. Space Technology and Applications International Forum–2003. Albuquerque, New Mexico, 2–5 February, 2003, pp. 580–588. DOI: 10.1063/1.1541342
[20] Zagarola M.V., Crowley C.J., Swift W.L. Progress on Low-Power Turbo-Brayton Converters. AIP Conference Proceedings 699. EI-Genk M.S., ed. Space Technology and Applications International Forum–2004. Albuquerque, New Mexico, 8–12 February, 2004, pp. 453–462. DOI: 10.1063/1.1649606
[21] El-Genk M.S. Dual-mode, high energy utilization system concept for mars missions. AIP Conference Proceedings 504. EI-Genk M.S., ed. Space Technology and Applications International Forum–2000. Albuquerque, New Mexico, February, 2000, pp. 1290–1301. DOI: 10.1063/1.1290942
[22] Borowski S.K., Stanley K., McGuire M.L., Mason M.L., Gilland J.H., Packard T.W. “Bimodal” Nuclear Thermal Rocket (BNTR) Propulsion for an Artificial Gravity HOPE Mission to Callisto. AIP Conference Proceedings 654. EI-Genk M.S., ed. Space Technology and Applications International Forum–2003. Albuquerque, New Mexico, 2–5 February, 2003, pp. 829–836. DOI: 10.1063/1.1541374
[23] Joyner II C.R., Fowler B., Matthews J. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions. AIP Conference Proceedings 654. EI-Genk M.S., ed. Space Technology and Applications International Forum–2003. Albuquerque, New Mexico, 2–5 February, 2003, pp. 677–684. DOI: 10.1063/1.1541355
[24] Satter C.M. JIMO Follow-On Mission Studies. AIP Conference Proceedings 746. EI-Genk M.S., ed. Space Technology and Applications International Forum–2005. Albuquerque, New Mexico, 13–17 February, 2005, pp. 249–257. DOI: 10.1063/1.1867141
[25] Frye P.E., Allen R., Delventhal R. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion – Phase I. AIP Conference Proceedings 746. EI-Genk M.S., ed. Space Technology and Applications International Forum–2005. Albuquerque, New Mexico, 13–17 February, 2005, pp. 727–737. DOI: 10.1063/1.1867192
[26] McGuire M.L., Martini M.C., Packard T.W., Weglian J.E., Gilland J.H. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission. AIP Conference Proceedings 813. EI-Genk M.S., ed. Space Technology and Applications International Forum–2006. Albuquerque, New Mexico, 12–16 February, 2006, pp. 222–229. DOI: 10.1063/1.2169198
[27] Тестоедов Н.А. Перспективы и приоритеты развития информационных спутниковых систем. Материалы IV науч.-практ. конф. «Вызовы и долгосрочные перспективы развития информационных космических систем», г. Кубинка, Московской обл., 10 сентября 2016 г. URL: https://tp.iss–reshetnev.ru/documents/ (дата обращения 05.02.2018).
[28] ПАО «Сатурн». Солнечные батареи. URL: http://saturn-kuban.ru/produktsiya/solnechnye-batarei/ (дата обращения 05.02.2018).
[29] Акимов В.Н., Коротеев А.А., Коротеев А.С. Ядерная космическая энергетика: вчера, сегодня, завтра. Известия Российской академии наук. Энергетика, 2012, № 1, c. 3–11.
[30] Андрианов Д.И., Захаренков Л.Э., Каревский А.В., Попов А.В., Попов С.А., Семёнкин А.В., Солодухин А.Е., Терехов Д.Н., Штонда С.Ю. Мощные энергодвигательные установки космического назначения с газотурбинным преобразованием энергии по замкнутому циклу Брайтона и особенности их экспериментальной отработки. Инженерный журнал: наука и инновации, 2016, вып. 7 (55). DOI: 10.18698/2308-6033-2016-7-1518
[31] Dragunov Yu.G. Reactor unit for megawatt propulsion-power module. Atomic Energy, 2012, vol. 113, no. 1, pp. 1–3.
[32] Драгунов Ю.Г., Габараев Б.А., Ужанова В.В., Беляков М.С., Селиверстов М.М. Космические ядерные энергетические установки суб- и мегаваттного класса. Ч. 1. Концепции реакторов (обзор). Проблемы машиностроения и автоматизации, 2014, № 2, c. 95–107.
[33] Драгунов Ю.Г., Габараев Б.А., Ужанова В.В., Беляков М.С., Селиверстов М.М. Космические ядерные энергетические установки суб- и мегаваттного класса. Ч. 2. Системы преобразования тепловой энергии реактора в электрическую и отвода неиспользованного тепла (обзор). Проблемы машиностроения и автоматизации, 2014, № 3, c. 130–140.
[34] Драгунов Ю.Г. Быстрый газоохлаждаемый реактор для космической ЯЭДУ мегаваттного класса. Проблемы машиностроения и автоматизации, 2015, № 2, c. 117–120.
[35] Гребенник В.Н., Кухаркин Н.Е., Пономарев-Степной Н.Н. Высокотемпературные газоохлаждаемые реакторы – инновационное направление развития атомной энергетики. Москва, Энергоатомиздат, 2008, 136 с.
[36] Манушин Э.А., Бекнев В.С., Осипов М.И., Суровцев И.Г. Ядерные газотурбинные и комбинированные установки. Манушин Э.А., ред. Москва, Энергоатомиздат, 1993, 272 с.
[37] Mohamed S.E., Tournier J.P. Noble gas binary mixtures for gas-cooled reactor power plants. Nuclear Engineering and Design, 2008, vol. 238, pp. 1353–1372.
[38] Mohamed S.E., Tournier J.P. On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids. Energy Conversion and Management, 2008, vol. 49, pp. 1882–1891.
[39] El-Genk M.S., Tournier J.P. Selection of noble gas binary mixtures for Brayton space nuclear power systems. Proceedings of 4th international energy conversion engineering conference (IECEC), San Diego, CA, June 26–29, 2006. New York, AIAA, 2006, paper No. AIAA–2006–59986.
[40] Johnson P.K. A Method for Calculating Viscosity and Thermal Conductivity of a Helium–Xenon Gas Mixture. Report No. NASA CR-2006-214394, 2006. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060056311.pdf (дата обращения 05.02.2018).
[41] Coombs M.G., Morse C.J., Richard C.E. Topical report (Phase I) “Conceptual design study of nuclear Brayton cycle heat exchanger and duct assembly (HXDA)”. Report No. NASA CR–72783 (AIResearch 70–6691), 1970. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710006163.pdf (дата обращения 05.02.2018).
[42] Brian A., Sam A., Shawn B., et al. Megawatt solar power systems for lunar surface operations (Final report). Report: Space Systems Design, AA420/421 (NASA/USRA University Advanced Design Program), 1990. URL: https://ntrs.nasa.gov/search.jsp?R=19910008844 (дата обращения 05.02.2018).
[43] Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. Москва, Наука, 1972, 720 с.
[44] Tournier J.P., Mohamed S.E. Properties of noble gases and binary mixtures for closed Brayton Cycle application. Energy Conversion and Management, 2008, vol. 49, pp. 469–492.
[45] Schneider W., Duffie J. Compressibility of gases at high temperature – II: the second virial coefficient of helium in the temperature range 0 C to 600 C. Journal of Chemical Physics, 1949, vol. 17, no. 9, pp. 751–754.
[46] Yntema J., Schneider W. Compressibility of gases at high temperature – III: The second virial coefficient of helium in the temperature range 600 C to 1200 C. Journal of Chemical Physics, 1950, vol. 18, no. 5, pp. 641–646.
[47] Brewer J., Vaughn G. Measurement and correlation of some interaction second virial coefficients from –125 C to 50 C. Journal of Chemical Physics, 1969, vol. 50, no. 7, pp. 2960–2968.
[48] Blancett A., Hall K., Canfield F. Isotherms for the He–Ar System at 50 C, 0 C and –50 C up to 700 Atmospheres. Physica, 1970, no. 47, pp. 75–91.
[49] Levelt Sengers J.M.H., Klein M., Gallagher J. Pressure — volume temperature relationships of gases — virial coefficients. 3rd ed. American institute of physics handbook. New York, American Institute of Physics, 1972, 2364 p.
[50] Dillard D., Waxman M., Robinson R. Volumetric data and virial coefficients for helium, krypton, and helium–krypton mixtures. Journal of Chemical and Engineering Data, 1978, vol. 23, no. 4, pp. 269–274.
[51] Elias E., Hoang N., Sommer J., Schramm B. Die zweiten Virialkoeffizienten von Helium–Gasmischungen im Bereich unterhalb Zimmertemperatur. Ber Bunsenges Phys Chem., 1986, Bd. 90, no. 4, S. 342–351.
[52] Nicholson G., Schneider W. Compressibility of gases at high temperature–IX: second virial coefficients and the intermolecular potential of neon. The Canadian Journal of Chemical Engineering, 1955, no. 33, pp. 589–596.
[53] Schmiedel H., Gehrmann R., Schramm B. Die zweiten Virialkoeffizienten verschiedener Gasmischungen im Temperaturbereich von 213 bis 475 K. Ber Bunsenges Phys. Chem., 1980, no. 84, S. 721–724.
[54] Dymond J.H., Smith E.B. The virial coefficients of pure gases and mixtures — a critical compilation. Oxford, England, Clarendon Press, 1980, 518 p.
[55] Sevast’yanov R.M., Cheryavskaya R.A. Virial coefficients of neon, argon, and krypton at temperatures up to 3000 K. Journal of Engineering Physic, 1987, no. 52, pp. 703–705.
[56] Whalley E., Lupien Y., Schneider W. The compressibility of gases — VII: argon in the temperature range 0–600 C and the Pressure Range 10–80 Atmospheres. The Canadian Journal of Chemical Engineering, 1953, no. 31, pp. 727–733.
[57] Rentschler H., Schramm B. Eine Apparatur zur Messung von zweiten Virialkoeffizienten bei hohen Temperaturen. Ber Bunsenges Phys Chem, 1977, Bd. 81, no. 3, S. 319–321.
[58] Stewart R., Jacobsen R. Thermodynamic properties of argon from the triple point to 1200 K with pressure to 1000 MPa. Journal of Physical and Chemical Reference Data, 1989, vol. 18, no. 2, pp. 639–752.
[59] Gilgen R., Kleinrahm R., Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of argon — I: the homogeneous gas and liquid regions in the temperature range from 90 K to 340 K at pressures up to 12 MPa. Journal of Chemical Thermodynamics, 1994, no. 26, pp. 383–398.
[60] Tegeler C., Span R., Wagner W. A new equation of state for argon covering the fluid region for temperatures from the melting point line to 700 K at рressure up to 1000 MPa. Journal of Physical and Chemical Reference Data, 1999, vol. 28, no. 3, pp. 779–850.
[61] Beattie J., Barriault R., Brierley J. Compressibility of gaseous xenon–II: the virial coefficient and potential parameter of xenon. Journal of Chemical Physics, 1951, vol. 19, no. 10, pp. 1222–1226.
[62] Whalley E., Lupien Y., Schneider W. The compressibility of gases at high temperature — X: xenon in the temperature range 0–700 C and the pressure range 8–50 atmospheres. The Canadian Journal of Chemical Engineering, 1955, no. 33, pp. 633–636.
[63] Kalfoglou N., Miller J. Compressibility of gases. Journal of Chemical Physics, 1967, vol. 71, no. 5, pp. 1256–1264.
[64] Kestin J., Knierim K., Mason E., Njafi S., Ro S., Waldman M. Equilibrium and transport properties of the noble gases and their mixtures at low density. Journal of Physical and Chemical Reference Data, 1984, vol. 13, no. 1, pp. 229–303.
[65] NIST Chemistry WebBook. National Institute of Standards and Technology. URL: http://webbook.nist.gov/chemistry/ (дата обращения 05.02.2018).
[66] Dawe R., Smith E. Viscosity of inert gases at high temperatures. Journal of Chemical Physics, 1970, vol. 52, no. 2, pp. 693–703.
[67] Maitland G., Smith E.B. Critical reassessment of viscosities of 11 common gases. Journal of Chemical and Engineering Data, 1972, vol. 17, no. 2, pp. 150–156.
[68] Kestin J., Ro S., Wakeham W. Viscosity of noble gases in the temperature range 25–700 C. Journal of Chemical Physics, 1972, vol. 56, no. 8, pp. 4119–4124.
[69] Touloukian Y., Saxena S., Hestermans P. Thermophysical properties of matter. Vol. 11: Viscosity. New York, Washington: IFI/Plenum, 1975. 802 p.
[70] Kestin J., Khalifa H., Wakeham W. The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases. Physica, 1978, no. 90A, pp. 215–228.
[71] Bich E., Millat J., Vogel E. The viscosity and thermal conductivity of pure monoatomic gases from their normal boiling point up to 500 K in the limit of zero density and at 0.101325 MPa. Journal of Physical and Chemical Reference Data, 1990, vol. 19, no. 6, pp. 1289–1305.
[72] Younglove B., Hanley H. The viscosity and thermal conductivity coefficients of gaseous and liquid argon. Journal of Physical and Chemical Reference Data, 1986, vol. 15, no. 4, pp. 1323–1337.
[73] Kestin J., Nagashima A. Viscosity of neon–helium and neon–argon mixtures at 20 C and 30 C. Journal of Chemical Physics, 1964, vol. 40, no. 12, pp. 3648–3654.
[74] Iwasaki H., Kestin J. The viscosity of argon–helium mixtures. Physical, 1963, no. 29, pp. 1345–1372.
[75] Kestin J., Kobayashi Y., Wood T. The viscosity of four binary gaseous mixtures at 20 C and 30 C. Physical, 1966, no. 32, pp. 1065–1089.
[76] Kestin J., Leidenfrost W. An absolute determination of the viscosity of eleven gases over a range of pressures. Physical, 1959, no. 25, pp. 1033–1062.
[77] Kestin J., Whitelaw J. A relative determination of the viscosity of several gases by the oscillating disk method. Physical, 1963, no. 29, pp. 335–356.
[78] Flynn G.P., Hanks R.V., Lemaire N.A., Ross J. Viscosity of nitrogen, helium, neon and argon from 78.5 C to 100 C below 200 atmospheres. Journal of Chemical Physics, 1963, vol. 38, no. 1, pp. 154–162.
[79] Reynes E., Thodos G. Viscosity of helium, neon, and nitrogen in the dense gaseous region. Journal of Chemical and Engineering Data, 1966, vol. 11, no. 2, pp. 137–140.
[80] Kao J., Kobayashi R. Viscosity of helium and nitrogen and their mixtures at low temperature and elevated pressures. Journal of Chemical Physics, 1967, vol. 47, no. 8, pp. 2836–2849.
[81] Trappeniers N., Botzen H., Van Der Berg H., Van Oosten J. The viscosity of neon between 25 C and 75 C at pressures up to 1800 atmospheres – corresponding states for the viscosity of the noble gases up to high density. Physica, 1964, no. 30, pp. 985–996.
[82] Kestin J., Korfali O., Sengers J., Kamgar–Parsi B. Density dependence and composition dependence of the viscosity of neon–helium and neon–argon mixtures. Physica, 1981, no. 106A, pp. 416–422.
[83] Рабинович В.А., Вассерман А.А, Недоступ В.И., Векслер Л.С. Теплофизические свойства неона, аргона, криптона и ксенона. Рабинович В.А., ред., Москва, Издательство стандартов, 1976, 636 с.
[84] Michels A., Botzen H., Schuurman W. The viscosity of argon at pressures up to 2000 atmospheres. Physical, 1954, no. 20, pp. 1141–1148.
[85] Reynes E., Thodos G. The viscosity of argon, krypton, and xenon in the dense gaseous region. Physical, 1964, no. 30, pp. 1529–1542.
[86] Thornton E. Viscosity of binary mixtures of rare gases. Progress in international research on thermodynamic and transport properties. Masi J., Tsai D., editors. Princeton University, Princeton NJ, January 24–26, 1962. New York, The American Society of Mechanical Engineers, Academic Press, 1962. 772 p.
[87] Brokaw R. Viscosity of gas mixtures. NASA Technical Note D-4496. Washington DC, NASA, 1968, 28 p. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680012255.pdf (дата обращения 05.02.2018).
[88] Rietveld A.O., van Itterbeek A., van den Berg G.J. Measurements on the viscosity of mixtures of helium and argon. Physical, 1953, no. 19, pp. 517–524.
[89] Kelelkar A., Kestin J. Viscosity of He–Ar and He–Kr binary gaseous mixtures in the temperature range 25–720 C. Journal of Chemical Physics, 1970, vol. 52, no. 8, pp. 4248–4261.
[90] Maitland G., Smith E.B. Viscosities of binary gas mixtures at high temperatures. Journal of Chemical Society, Faraday Transaction. Part I, 1974, no. 70, pp. 1191–1211.
[91] Gough D.W., Matthews G.P., Smith E.B. Viscosity of nitrogen and certain gaseous mixtures at low temperatures. Journal of Chemical Society, Faraday Transaction. Part I, 1976, no. 72, pp. 645–653.
[92] Thornton E. Viscosity and thermal conductivity of binary gas mixtures: krypton–argon, krypton–neon and krypton–helium. Proceedings of Physical of the Society of London, 1961, no. 77, pp. 1166–1169.
[93] Thornton E. Viscosity and thermal conductivity of binary gas mixtures: xenon–krypton, xenon–argon, xenon–neon and xenon–helium. Proceedings of Physical of the Society of London, 1960, no. 76, pp. 104–112.
[94] Kestin J., Wakeham W., Watenabe K. Viscosity, thermal conductivity, and diffusion coefficient of Ar–Ne and Ar–Kr gaseous mixtures in the temperature range 25–700 C. Journal of Chemical Physics, 1970, vol. 53, no. 10, pp. 3773–3780.
[95] Варгафтик Н.Б., Филиппов Л.П., Тарзиманов А.А., Тонкий Е.Е. Справочник по теплопроводности жидкостей и газов. Москва, Энергоатомиздат, 1990, 352 с.
[96] Touloukian Y., Liley P., Saxena S. Thermophysical properties of matter. Vol. 3: Thermal Conductivity — Nonmetallic Liquids and Gases. New York/Washington, IFI/Plenum, 1970, 708 p.
[97] Kestin J., Paul R., Clifford A., Wakeham W. Absolute determination of the thermal conductivity of noble gases at room temperature up to 35 MPa. Physica, 1980, no. 100A, pp. 349–369.
[98] Sengers J., Bolk W., Stigter C. The thermal conductivity of neon between 25 C and 75 C at pressure up to 2600 atmospheres. Physica, 1964, no. 30, pp. 1018–1026.
[99] Michels A., Sengers J., Van De Klundert J. The thermal conductivity of argon at elevated densities. Physica, 1963, no. 29, pp. 149–160.
[100] Rosenbaum B., Oshen O., Thodos G. Thermal conductivity of argon in the dense gaseous and liquid regions. Journal of Chemical Physics, 1966, vol. 44, no. 8, pp. 2831–2838.
[101] Bailey B., Kellner K. The thermal conductivity of gaseous and liquid argon. Physica, 1968, no. 39, pp. 444–462.
[102] Mason E., Von Ubisch H. Thermal conductivities of rare gas mixtures. The Physics of Fluids, 1960, vol. 3, no. 1, pp. 355–361.
[103] Gandhi J., Saxena S. Correlated thermal conductivity data of rare gases and their mixtures at ordinary pressure. Journal of Chemical and Engineering Data, 1968, vol. 13, no. 3, pp. 357–361.
[104] Van Dael W., Cauwenbergh H. Measurements of the thermal conductivity of gases. Physica, 1968, no. 40, pp. 173–181.
[105] Gambhir R., Saxena S. Thermal conductivity of binary and ternary mixtures of krypton, argon and helium. Molecular Physics, 1966, vol. 11, no. 3, pp. 233–241.
[106] Mastovsky J. High temperature conduction of helium–xenon mixtures. Journal of Engineering Physics, 1978, vol. 33, no. 4, pp. 1170–1175.
[107] Hashimoto K., Matsunaga N., Nagashima A., Mito K. Determination of the thermal conductivity of xenon–helium mixtures at high temperature by the shock-tube method. International Journal of Thermophysics, 1992, vol. 13, no. 2, pp. 211–221.
[108] Mathur S., Tondon P. K., Saxena S. C. Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. Molecular Physics, 1967, no. 12, pp. 569–579.
[109] Shashkov A.G., Yaroshenko T.I., Nesterov N.A., Afshar R., Saxena S.C. Thermal Conductivity of Helium–Xenon, Argon–Xenon and Krypton–Xenon at Low Temperatures (170–273 K). Thermal Conductivity, 1983, no. 16, pp. 549–563.
[110] Clifford A., Fleeter R., Kestin J., Wakeham W. Thermal conductivity of some mixtures of monoatomic gases at room temperature and at pressures up to 15 MPa. Physica, 1979, no. 98A, pp. 467–490.
[111] Крутов В.И., Исаев С.И., Кожинов И.А. и др. Техническая термодинамика. Крутов В.И., ред., Москва, Высшая школа, 1991, 384 с.
[112] Служба стандартных справочных данных о физических константах и свойствах веществ и материалов в области использования атомной энергии Госкорпорации по атомной энергии. Теплофизические свойства газов и их смесей, используемых в ЯЭУ. URL: http://gsssd-rosatom.mephi.ru/DB-tp-02/index-tp-02.php (дата обращения 05.02.2018).
[113] Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular theory of gases and liquids. New York, John Wiley & Sons Inc., London, Chapman and Hall, 1954, 1219 p.
[114] Бахмутов Д.М., Камолов Б.Х. Методика расчета критерия Прандтля для бинарных смесей инертных газов. Молодежный науч.-техн. вестник МГТУ им. Н.Э. Баумана, 2016, № 3. URL: http://sntbul.bmstu.ru/doc/837344.html (дата обращения 05.02.2018).
[115] Бурцев С.А., Кочуров Д.С., Щеголев Н.Л. Исследование влияния доли гелия на значение критерия Прандтля газовых смесей. Наука и образование: научное издание МГТУ им. Н.Э. Баумана, 2014, № 5, с. 314–329. URL: http://technomagelpub.elpub.ru/jour/article/view/612 (дата обращения 05.02.2018).
[116] Бурцев С.А., Кочуров Д.С., Щеголев Н.Л. Исследование влияния состава бинарных смесей инертных газов на их теплофизические свойства. Наука и образование: научное издание МГТУ им. Н.Э. Баумана, 2015, № 11, с. 217–237. URL: http://engineering-science.ru/doc/822897.html (дата обращения 05.02.2018).
[117] Dragunov Y.G., Smetannikov V.P., Gabaraev B.A., Orlov A.N., Belyakov M.S., Derbenev D.S. On calculation of the transport coefficients and thermodynamic properties of a helium–xenon gas mixture. Journal of Engineering Thermophysics, 2013, vol. 22, no. 1, pp. 21–29.
[118] Dragunov Yu.G., Smetannikov V.P., Gabaraev B.A., Belyakov M.S., Kobzev P.V. On the choice of correlations for calculating the heat transfer coefficient in binary gas mixtures. Journal of Engineering Thermophysics, 2013, vol. 22, no. 1, pp. 30–42.
[119] Varaksin A.Y., Romash M.E., Kopeitsev V.N. Effect of Net Structures on Wall-Free Non-Stationary Air Heat Vortices. Int. J. Heat and Mass Transfer, 2013, vol. 64, pp. 817–828.
[120] Dermer P.B., Varaksin A.Y., Leontiev A.I. The wall-free non-stationary fire whirls generation by axisymmetric burning of solid fuel pellets. International Journal of Heat and Mass Transfer, 2017, vol. 110, pp. 890–897.
[121] Kuzenov V.V., Ryzhkov S.V. Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes. Journal of Physics: Conference Series, 2017, vol. 815, pp. 1–8.
[122] Kuzenov V.V., Ryzhkov S.V., Frolko P.A. Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge. Journal of Physics: Conference Series, 2017, vol. 830, pp. 1–6.
[123] Компанеец В.Я. Экспериментальное определение вязкости газов и газовых смесей при высоких температурах. Сб. науч. тр. Ленинградского института механизации сельского хозяйства. Т. 9. Москва – Ленинград, Издательство с/х литературы, 1953, с. 113–126.
[124] Aziz R., McCourt F., Wong C. A New Determination of the Ground State Interatomic Potential for He–I. Molecular Physics, 1987, vol. 61, pp. 1487–1511.
[125] Michels A., et al. Compressibility Isotherms of Hydrogen and Deuterium at Temperatures between –175 and +150 C. Physica, 1959, vol. 25, pp. 1097–1124.
[126] Трусов Б.Г. Программная система моделирования фазовых и химических равновесий при высоких температурах. Инженерный журнал: наука и инновации, 2012, вып. 1 (1). DOI: 10.18698/2308-6033-2012-1-31
[127] Трусов Б.Г. Компьютерное моделирование фазовых и химических равновесий. Инженерный вестник, 2012, № 8, с. 1–7. URL: http://engsi.ru/doc/483186.html (дата обращения 05.02.2018).