ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение” 2012
175
7.
S p e n c e A.D., A l t i n t a s Y. A solid modeler-based milling process simula-
tion and planning system // Trans. ASME. – 1994. – Vol. 116. – P. 61–69.
8.
W e i n e r t K.; S u r m a n n T. Approaches for modelling engagement condi-
tions in milling simulations // In: van Luttervelt C.A. (ed.). 4th CIRP Interna-
tional Workshop Modeling of Machining Operations, Delft (The Netherlands),
August 17–18, 2001. – P. 67–69.
9.
W e i n e r t K., S u r m a n n T. Modelling of surface structures resulting from
vibrating milling tools: Production Engineering – Research and Development
//
Annals of the German Academic Society for Production Engineering. –
2006. –
Vol. XIII (2). – P. 133–138.
10.
S u r m a n n T., E n k D. Simulation of milling tool vibration trajectories
along changing engagement conditions // Int. J. of Machine Tools and Manu-
facture. – 2007. – No. 47 (9). – P. 1442–1448.
11.
S p e n c e A.D., A b r a r i F., E l b e s t a w i M.A. Integrated solid modeler-
based solutions for machining //Comput. Aided Des. – 2000. – No. 32. –
P. 553–568.
12.
Methods for detecting errors in numerically controlled machining of sculp-
tured surfaces / R.Jerard, R. Drysdale, K. Hauck, B. Schaudt, J. Magewick //
IEEE Comput. Graph. Appl. – 1989. – No. 9 (1). – P. 26–39.
13.
P h a m T., K i m Y., K o S. Development of a software for effective cutting
simulation using advanced octree algorithm // Proc. of the 2007 International
Conference Computational Science and its Applications. – P. 324–334.
14.
M e a g h e r D. Geometric modelling using octree method // Comput. Graph.
and Image Processing. – 1982. – Vol. 19. – P. 129–147.
15.
A n d e r s o n R.O. Detecting and eliminating collisions in NC 345 machining
//
Comput. Aided Des. – 1978. – No. 10 (2). – P. 231–237.
16.
H o o k T.V. Real-time shaded NC-milling display // Proc. ACM. – 1986. –
No. 20 (4). – P. 15–20.
17.
H s u P.L., Y a n g W.T. Real-time 3D-simulation of 3-axis milling using
isometric projection // Compute. Aided Des. – 1993. – No. 25 (4). – P. 215–
224.
18.
J e r a r d R.B., F u s s e l l B.K., E r c a n M.T. On-line optimization of cutting
conditions for NC machining // 2001 NSF Design, Manufacturing and Indus-
trial Innovation Research Conf., January 7–10, 2001.
19.
T a k a t a S., T s a i M.D., I n u i M., S a t a T. A cutting simulation system
for machinability evaluation using a workpiece model // Annals of the CIRP.
– 1989. –
Vol. 38/1. – P. 417–420.
20.
K i m G.M., C h o P.J., C h u C.N. Cutting force prediction of sculptured
surface ball-end milling using Z-map // Int. J. Mach. Tools Manuf. – 2000. –
No. 40. – P. 277–291.
21.
G u z e l B.U., L a z o g l u I. Sculpture surface machining: A generalized
model of ball-end milling force system // Int. J. of Machine Tools and Manu-
facture. – 2003. – Vol. 43 (5). – P. 453–462.
22.
L e e S.K., K o S.L. Development of simulation system for machining pro-
cess using enhanced Z-map model // J. of Materials Processing Technology.
– 2002. –
Vol. 130–131. – P. 608–617.
Статья поступила в редакцию 28.09.2012