Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

Н.В. Быков, К.А. Бырдин, В.С. Макаренко

12

Инженерный журнал: наука и инновации

# 2·2017

Effect of the injected jet pressure ratio

on rocket engine power characteristics

© N.V. Bykov

1,2

, K.A. Byrdin

1

, V.S. Makarenko

1

1

Bauman Moscow State Technical University, Moscow, 105005, Russia

2

Federal Research Centre for Computer Science and Control

of the Russian Academy of Sciences, Moscow, 119333, Russia

We studied how the pressure ratio of a jet being injected into the supercritical portion of

a rocket engine nozzle affects rocket engine performance and power characteristics. We

solved two test problems in order to verify the computation technique. We analysed the

potential of using a modelling software package to calculate how jets interact with a su-

personic flow. We used a modern hydrocode to model a supersonic jet being injected into

the supercritical nozzle portion. We obtained results of a series of numerical computa-

tions for various pressure ratios of the jet being injected, which allowed us to determine

the lateral control force as a function of the pressure ratio of the jet injected. The numer-

ical gas dynamics experiment technology presented may be useful for designing rocket

control and stabilisation systems.

Keywords

: injection thrust vectoring, asymmetrical injection, jet interaction, supersonic

flows, gas-dynamics flight controls

REFERENCES



Kalugin V.T.

Aerogazodinamika organov upravleniya poletom letatelnykh ap-

paratov

[Air and gas dynamics in aircraft flight controls]. Moscow, BMSTU

Publ., 2004, 688 p.



Krasnov I.F., Koshevoy V.N.

Upravlenie i stabilizatsiya v aerodinamike

[Con-

trol and stabilisation in aerodynamics]. Moscow, Vysshaya Shkola Publ., 1978,

480 p.



Krasnov I.F., Koshevoy V.N., Kalugin V.T.

Aerodinamika otryvnykh techeniy

[Aerodynamics of detached flows]. Moscow, Vysshaya Shkola Publ., 1986,

352 p.



Yun A.A.

Modelirovanie turbulentnykh techeniy

[Turbulent flow modelling].

2nd ed., revised. Moscow, Editorial URSS Publ., 2010, 352 p.



Vuillermoz P., Lambaré H., Enzian A., Steinfeld P., Lequette L. Computational

Flow Simulations of Overexpanded Rocket Nozzle Flowfields including

Unsteady Effects.

The

Fourth Symposium on Aerothermodynamics for Space

Vehicles: co-sponsored by European Space Agency.

Held October 15–18,

2001, in Capua, Italy. R.A. Harris, ed. European Space Agency, ESA SP-487,

2002, 391 p. ISBN: 92-9092-789-5.



Karpov A.V., Vasilev E.I.

Vestnik Volgogradskogo gosudarstvennogo univer-

siteta. Seriya 1: Matematika. Fizika — Science Journal of Volgograd State

University. Mathematics. Physics

, 2005, issue 9, pp. 81–88.



Bykov N.V., Kalugin V.T.

Kompleksnye problemy razvitiya nauki, obra-

zovaniya i ekonomiki regiona — Complex problems of scientific, educational

and economic progress in the region

, 2015, no. 1 (5), pp. 64–72.



Dhinagaran R., Bose T.K. Comparison of Euler and Navier—Stokes solution

for nozzle flows with secondary injection. The 34th Aerospace Sciences Meet-

ing and Exhibit.

AIAA Paper

96-0453, Jan. 1996.



Chenault C.F., Beran P.S.

AIAA Journal

, 1998, vol. 36, no. 8, pp. 1401–1412.