Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

Система многокритериального проектирования тензорезисторных…

Инженерный журнал: наука и инновации

# 1·2017 13

System for multicriteria design of strain gauge load cells

having axis symmetrical elastic elements

© S.I. Gavrilenkov

1

, S.S. Gavryushin

1

, V.A. Godzikovskiy

2

¹Bauman Moscow State Technical University, Moscow, 105005, Russia

2

JSC Weight Measuring Company Tenso-M, Moscow Region,

Kraskovo, 140050, Russia

This paper briefly touches upon the mechanics of strain gauge load cells and states the

problem of strain gauge load cell design. The mentioned problem is subdivided into two

tasks: picking and choosing the shape and the dimensions of the elastic element, and

finding the right spots for mounting strain gauges on the elastic element. We created

a system for designing strain gauged load cells having axis symmetrical elastic elements.

The system implements the method of parameter space investigation and utilizes capabili-

ties of the CAE system ANSYS. The system’s capabilities are demonstrated by designing

a load cell for Weigh-In-Motion scales. Solution of this design problem comprises defin-

ing the parameter space and setting the values of the criteria constraints. We investigated

the parameter space using the system mentioned above. Finally, we developed a finite-

element model of the load cell being designed. The numerical experiments resulted in

a Pareto-feasible set, which is given to the Decision Maker, so that he could choose the

best option.

Keywords

: multicriteria design, finite-element method, elastic element, the parameter

space investigation method, strain gauge

REFERENCES

[1]

Gavryushina N.T., Nepochatov A.V., Godzikovskiy V.A.

Izvestiya vysshikh

uchebnykh zavedeniy. Mashinostroyeniye — Proceedings of Higher Educa-

tional Institutions. Machine Building

, 2013, no. 2, pp. 69–74.

[2]

OIML R60.

Available at:

http://www.fundmetrology.ru/depository/04_IntDoc_all/R%2060.pdf

(accessed

October 25, 2016).

[3]

Hoffmann K.

Applying the Wheatstone Bridge Circuit

. Available at:

https://www.hbm.com/en/3193/tips-and-tricks-applying-the-wheatstone-bridge-

circuit/ (accessed October 25, 2016).

[4]

Kreuzer M.

Wheatstone Bridge Circuits Show Almost No Nonlinearity and

Sensitivity Errors When Used for Single Strain Gage Measurements

. Available

at:

https://www.hbm.com/en/3196/tips-and-tricks-wheatstone-bridge-circuits-

show-almost-no-nonlinearity-and-sensitivity-errors-when-used-for-single-strain-

gage-measurements/ (accessed October 25, 2016).

[5]

Gavryushin S.S., Baryshnikova O.O., Boriskin O.F.

Chislennyy analiz ele-

mentov konstruktsiy mashin i priborov

[Numerical analysis of structural ele-

ments of machines and devices].

2

nd

ed. Moscow, BMSTU Publ., 2014, 479 p.

[6]

Sobol I.M., Statnikov R.B.

Vybor optimalnykh parametrov v zadachakh so

mnogimi kriteriyami

[Choosing the optimal parameters in problems with many

criteria]. 2

nd

revised edition. Moscow, Drofa Publ., 2006, 175 p.

[7]

Statnikov R.B., Gavrushin S.S., Dang M.H., Statnikov A.R. Multicriteria

Deisgn of Composite Pressure Vessels.

International Journal of Multicriteria

Decision Making

, 2014, vol. 4, no. 3, pp. 252–278.