Анализ структурных и теплофизических характеристик высокопористой…
Инженерный журнал: наука и инновации
# 1·2017 13
Analysis of structural and thermal-physical characteristics
of high-porosity basalt thermal insulation for tubing
© M.A. Komkov, Yu.V. Badanina, V.A. Tarasov, A.S. Filimonov
Bauman Moscow State Technical University, Moscow, 105005, Russia
The study shows the importance of developing high-porosity, low-density environmentally
friendly thermal insulation using accessible and inexpensive basalt fibres and a mineral
matrix to create structures operational under temperatures up to 750 °С. We discuss
basalt thermal insulation coating for tubing obtained via the technique of depositing
short fibres from the pulp upon a perforated attachment by means of filtration. We ana-
lysed a quantitative account of heat flow in oil well annuli through high-porosity thermal
insulation of tubing due to thermal conductivity of the basalt fibre framework, dry air and
via radiant heat transfer. We show that when determining the coefficient of thermal con-
ductivity for a fibrous material characterised by high porosity it is necessary to account
for the radiant heat transfer contribution to the heat transfer process, the radiant heat
transfer being a critical factor.
Keywords:
thermal insulation of structures, short basalt fibres, thermal insulation mate-
rial porosity, coefficient of thermal conductivity, tubing, cylindrical jackets
REFERENCES
[1]
Lozino-Lozinskiy G.E., Bratukhin A.G., ed.
Aviatsionno-kosmicheskie sistemy
[Aerospace systems]. Moscow, MAI Publ., 1997, 416 p.
[2]
Komkov M.A., Moiseev V.A., Tarasov V.A., Timofeev M.P.
Geofizicheskie
protsessy i biosfera — Geophysical Processes and Biosphere
, 2015, vol. 14,
no. 1, pp. 70–79.
[3]
Kalinin V.
Sibirskaya neft — Siberian Oil
, 2012, no. 4/91, pp. 16–19.
[4]
Suchkov B.M.
Temperaturnye rezhimy rabotayushchikh skvazhin i teplovye
metody dobychi nefti
[Temperatures in functioning oil wells and thermal oil re-
covery methods]. Ser. Sovremennye neftegazovye tekhnologii [Contemporary
oil-and-gas technologies series]. Moscow, Izhevsk, Computer Research Insti-
tute Publ., 2007, 406 p.
[5]
Komkov M.A., Moiseev V.A., Tarasov V.A., Timofeev M.P.
Izvestiya Rossiis-
koi Akademii nauk, Fizika atmosfery i okeana
—
Izvestiya
,
Atmospheric and
Oceanic Physics
, 2015, vol. 51, no. 8, pp. 819–825.
[6]
Moiseev V.A., Moiseev A.V., Komkov M.A., Frolov V.I.
Birzha intellektual-
noy sobstvennosti — Intellectual Property Exchange
, 2012, vol. 11, no. 9,
pp. 57–60.
[7]
Moiseev V.A., Moiseev A.V., Frolov V.I., Komkov M.A.
Truba teploizoliro-
vannaya
[Thermally insulated tube]. Patent 121855 RU, E21B 17/00 U1.
Kompomash-TEK JSC (RU). 2012, bulletin no. 31, 3 p.
[8]
Moiseev V.A., Moiseev A.V., Frolov V.I., Komkov M.A., Zelinskiy R.V.
Bir-
zha intellektualnoy sobstvennosti
—
Intellectual Property Exchange
, 2013,
vol. 12, no. 11, pp. 17–20.
[9]
Filimonov A.S., Tarasov V.A., Komkov M.A., Moiseev V.A., Timofeev M.P.,
Gerasimov N.V.
Inzhenernyy zhurnal: nauka i innovatsii
—
Engineering Jour-
nal: Science and Innovation
, 2012, issue 9. Available at:
http://engjournal.ru/catalog/machin/rocket/382.html