Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

Анализ структурных и теплофизических характеристик высокопористой…

Инженерный журнал: наука и инновации

# 1·2017 13

Analysis of structural and thermal-physical characteristics

of high-porosity basalt thermal insulation for tubing

© M.A. Komkov, Yu.V. Badanina, V.A. Tarasov, A.S. Filimonov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The study shows the importance of developing high-porosity, low-density environmentally

friendly thermal insulation using accessible and inexpensive basalt fibres and a mineral

matrix to create structures operational under temperatures up to 750 °С. We discuss

basalt thermal insulation coating for tubing obtained via the technique of depositing

short fibres from the pulp upon a perforated attachment by means of filtration. We ana-

lysed a quantitative account of heat flow in oil well annuli through high-porosity thermal

insulation of tubing due to thermal conductivity of the basalt fibre framework, dry air and

via radiant heat transfer. We show that when determining the coefficient of thermal con-

ductivity for a fibrous material characterised by high porosity it is necessary to account

for the radiant heat transfer contribution to the heat transfer process, the radiant heat

transfer being a critical factor.

Keywords:

thermal insulation of structures, short basalt fibres, thermal insulation mate-

rial porosity, coefficient of thermal conductivity, tubing, cylindrical jackets

REFERENCES

[1]

Lozino-Lozinskiy G.E., Bratukhin A.G., ed.

Aviatsionno-kosmicheskie sistemy

[Aerospace systems]. Moscow, MAI Publ., 1997, 416 p.

[2]

Komkov M.A., Moiseev V.A., Tarasov V.A., Timofeev M.P.

Geofizicheskie

protsessy i biosfera — Geophysical Processes and Biosphere

, 2015, vol. 14,

no. 1, pp. 70–79.

[3]

Kalinin V.

Sibirskaya neft — Siberian Oil

, 2012, no. 4/91, pp. 16–19.

[4]

Suchkov B.M.

Temperaturnye rezhimy rabotayushchikh skvazhin i teplovye

metody dobychi nefti

[Temperatures in functioning oil wells and thermal oil re-

covery methods]. Ser. Sovremennye neftegazovye tekhnologii [Contemporary

oil-and-gas technologies series]. Moscow, Izhevsk, Computer Research Insti-

tute Publ., 2007, 406 p.

[5]

Komkov M.A., Moiseev V.A., Tarasov V.A., Timofeev M.P.

Izvestiya Rossiis-

koi Akademii nauk, Fizika atmosfery i okeana

Izvestiya

,

Atmospheric and

Oceanic Physics

, 2015, vol. 51, no. 8, pp. 819–825.

[6]

Moiseev V.A., Moiseev A.V., Komkov M.A., Frolov V.I.

Birzha intellektual-

noy sobstvennosti — Intellectual Property Exchange

, 2012, vol. 11, no. 9,

pp. 57–60.

[7]

Moiseev V.A., Moiseev A.V., Frolov V.I., Komkov M.A.

Truba teploizoliro-

vannaya

[Thermally insulated tube]. Patent 121855 RU, E21B 17/00 U1.

Kompomash-TEK JSC (RU). 2012, bulletin no. 31, 3 p.

[8]

Moiseev V.A., Moiseev A.V., Frolov V.I., Komkov M.A., Zelinskiy R.V.

Bir-

zha intellektualnoy sobstvennosti

Intellectual Property Exchange

, 2013,

vol. 12, no. 11, pp. 17–20.

[9]

Filimonov A.S., Tarasov V.A., Komkov M.A., Moiseev V.A., Timofeev M.P.,

Gerasimov N.V.

Inzhenernyy zhurnal: nauka i innovatsii

Engineering Jour-

nal: Science and Innovation

, 2012, issue 9. Available at:

http://engjournal.ru/catalog/machin/rocket/382.html