Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

Экспериментально-теоретическое исследование истечения продуктов сгорания…

Инженерный журнал: наука и инновации

# 10·2016 11

Experimental and theoretical study of combustor discharge

from t

he double-nozzled gas generator

© D.A. Yagodnikov,

K.Yu

. Arefev, A.V. Sukhov,

I.I. Khomyakov,

N.Ya.

Iryanov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article considers the computational and experimental study results of condensed sys-

tem combustor discharge from the double-nozzled

gas generator, as well as mixing pro-

cess of combustion products. Calculations are based on mathematical modeling of gas-

dynamic flow in a three-dimensional way for viscous heat-conducting gas with condensed

phase particles. The article analyses gas generator model experimental studies with the

charge of energy condensed system of end burning. We used imaging techniques and

luminance pyrometry while diagnosing combustor discharge from the gas generator noz-

zles. The study reveals the regularities of changes in discharged combustion products

flow structure, and the gas-jets interaction processes at different pressures and at differ-

ent diameters of nozzle critical sections in the gas generator.

Keywords:

gas generator, energy condensed systems, combustor discharge, mathemati-

cal modeling, experimentation, visualization.

REFERENCES

[1]

Zhukov B.P., ed.

Energeticheskie kondensirovanny esistemy. Kratkiy

ehntsiklopedicheskiy slovar

[Energy condensed systems. Concise encyclopedic

dictionary]. Moscow, Yanus-K Publ., 2000, 596 p.

[2]

Dobrovolskiy M.V.

Zhidkostnye raketnye dvigateli

[Liquid motors], Moscow,

BMSTU Publ., 2016, 461 p.

[3]

Vlasov Yu.N.

Inzhenerny vestnik — Engineering Bulletin

, 2012, no. 9.

DOI: 77-48211/465812

[4]

Sorokin V.A., ed.

Konstruktsiya i proektirovanie kombinirovannykh raketnykh

dvigateley na tverdom toplive

[The construction and design of combined rocket

engine on solid fuel]. Moscow, BMSTU Publ., 2014, 304 p.

[5]

Frik P.G.

Turbulentnost: podkhody i modeli

[Turbulence: approaches and

models]. Moscow, RHD Publ., 2010, 107 p.

[6]

Sokolov B.I., Cherenkov A.S., Salomykov A.I.

Termodinamicheskie i

teplofizicheskie svoystva tverdykh raketnykh topliviikh produktov sgoraniya

[Thermodynamic and transport properties of solid rocket fuels and their

combustion products]. Moscow, Voenizdat Publ., 1977, 320 p.

[7]

Voronetskiy A.V.

Nauka i obrazovanie — Science and Education

, 2016, no. 1.

DOI: 10.7463/0116.0830993

[8]

Yagodnikov D.A., Lapitskiy V.I., Sukhov A.V., Tomak V.I.

Inzhenerny Vestnik —

Engineering Bulletin

,

2014, no. 11.

Available at:

http://engbul.bmstu.ru/doc/743675.html

(accessed August 21, 2016)

.

[9]

Yagodnikov D.A., Khomyakov I.I., Burkov A.S., Artyukhova O.A.

Vestnik

MGTU im. N.E. Baumana. Seria Mashinostroenie — Herald of Bauman Moscow

State Technical University, Series: Mechanical Engineering

, 2014, no. 3,

pp. 101–109. Available at:

http://vestnikmach.ru/catalog/powgen/hidden/

/488.html (accessed August 16, 2016).