Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Future look of a high-temperature nuclear power unit

Published: 31.08.2016

Authors: Bauchkin F.A.

Published in issue: #9(57)/2016

DOI: 10.18698/2308-6033-2016-9-1535

Category: Power, Metallurgic and Chemical Engineering | Chapter: Nuclear Reactor Engineering, Machines, Assemblies, and Nuclear Materials Technology

The paper discusses some technical solutions allowing to implement a collisionless mode with surface ionization in high-temperature thermionic nuclear power units and to formalize their future look. On the base of analysis we selected structural materials capable of providing performance and required output parameters at increased temperatures of electrodes. In particular, to provide the isothermal condition for the energy converter we consider a structural configuration with the energy converter placed beyond the reactor core. As a result, we obtain a perspective single-channel multi-element configuration of the electro-generating unit, which considers disadvantages of both single-element configuration and classic multi-element configuration. Besides, structural configuration of thermionic electro-generating assembly with the external nuclear fuel placement, which provides the simplicity of the design and the principle of modularity, is proposed. For further development of the suggested design a tentative estimation using CFD-software Star-CCM+ was carried out. It represents a static thermal numerical computation of channel's part with a length of 10 mm. Computation results are presented in the paper.

[1] Kvasnikov L.A., Kaybyshev V.Z., Kalandarishvili A.G. Rabochiye protsessy v termoemissionnykh preobrazovatelyakh yadernykh energeticheskikh ustanovok [Workflows in thermionic converters of nuclear power plants]. Moscow, MAI Publ., 2001, 208 p.
[2] Yarygin V.I. Fizicheskiye osnovy termoemissionnogo preobrazovaniya energii. Chast 1. Vvedeniye v spetsialnost [Physical fundamentals of thermionic energy conversion. Part 1: Introduction to Specialty]. Obninsk, SSC RF-IPPE, 2001, 78 p.
[3] Klyucharev A.N., Mishakov V.G., Timofeyev N.A. Vvedeniye vfiziku nizkotemperaturnoy plazmy [Introduction to the low-temperature plasma physics]. Saint Petersburg, Saint Petersburg State University Publ., 2008, 224 p.
[4] Lendyel V.I., Navrotsky V.T., Sabad E.N. Soviet Physics-Uspekhi (Advances in Physical Sciences), 1987, no. 3, pp. 425.
[5] Mondt D. Pikket V. Perspektivy termoemissionnykh reaktorov s vneshnim i vnutrennim razmeshcheniyem goryuchego dlya sistem s elektroreaktivnymi dvigatelyami [Prospects for thermionic reactors with internal and external placement of fuel for the systems with electro-reactive engines]. Pryamoye preobrazovaniye teplovoy energii v elektricheskuyu i toplivnyye element [Direct conversion of heat into electricity and fuel cells], 1971, no. 10, pp. 142.
[6] Pawlik E.V., Phillips W.M. A Nuclear Electric Propulsion Vehicle for Planetary Exploration. AIAA Paper 76-1041.
[7] Koenig D.R., Renken W.A., Salmi E.M. Heat Pipe Reactor for Space Applications. AIAA Paper 77-491.
[8] Mondt J.E., Stapfer C., Hsieh T.M. Nuclear Power Source for Electric Propulsion. AIAA Paper 79-2088.
[9] Evtikhin V.A., Chumanov A.N. Kosmicheskaya yadernaya energeticheskaya ustanovka [Space nuclear power plant]. Patent 2129740 Russian Federation. Published April 27, 1999.
[10] Yarygin V.I., Kuptsov G.A., Ionkin V.I., Ovcharenko M.K., Ruzhnikov V.A., Mikheyev A.S., Yarygin D.V. Termoemissionnyy elektrogeneriruyushchiy modul’ dlya aktivnoy zony yadernogo reaktora s vynesennoy termoemissionnoy sistemoy preobrazovaniya teplovoy energii v elektricheskuyu (varianty) [Thermionic power generating module for a nuclear reactor core with the taken thermionic system converting thermal energy into electrical (options)]. Patent 2187156 Russian Federation. Published August 10, 2002, 3 p.
[11] Bauchkin F.A. Proyektnyy oblik termoemissionnoy elektrogeneriruyushchey sborki vynesennogo tipa s tugoplavkoy vysokotemperaturnoy teplovoy truboy [Project shape of thermionic power generation assembly of external type with refractory high-temperature heat pipe]. Energetika: effektivnost, nadezhnost, bezopasnost. Materialy trudov XIX Vserossiyskoy nauchno-tekhnicheskoy konferentsii (Tomskiy politekhnicheskiy universitet, 4-6 dekabrya 2013 g.) [Energy: efficiency, reliability, safety. Proc. of the XIX All-Russia scientific and technical conf. (Tomsk Polytechnic University, 4-6 December, 2013]. Tomsk, Skan Publ., 2013, pp. 137-141.
[12] Dunn P.D., Reay D.A. Heat Pipes. Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Braunschweig, 1976. [In Russ.: Dunn P.D., Reay D.A. Teplovye truby. Moscow, Energia Publ., 1979, 272 p.].
[13] Quataert D., Busse C., Geiger F. Long term behaviour of high temperature tungsten-rhenium heat pipes with lithium or silver as working fluid. Proc. 1st Int. Heat Pipe Conf., Paper 4-4. Stuttgart, 1973.
[14] Ivanovsky M.N., Sorokin V.P., Chulkov B.A., Yagodkin I.V. Tekhnologicheskiye osnovy teplovykh trub [Technological bases of heat pipes]. Moscow, Atomizdat, 1980, 160 p.
[15] Goryunov Goryunov Yu.V., Pertsov N.V., Summ B.D. Effekt Rebindera [Rehbinder effect]. Moscow, Nauka, 1966.
[16] Geiger F., Quataert D. Corrosion studies of tungsten heat pipes at temperatures up to 2650°C. Proc. Second Intern. Heat Pipe Conf. Bologna, Italy. 1976, vol. 1, pp. 347.
[17] Bauchkin F.A. Raschetnoye sravneniye elektrogeneriruyushchikh sborok vynesennogo tipa s vnutrennim i vneshnim raspolozheniyem topliva [Estimated comparison of electrogenerating assemblies of external type with internal and external arrangement of fuel]. (To be published).