Studying efficient small-scale natural gas liquefaction plants
Authors: Arharov A.M., Semenov V.Yu., Likhacheva N.I.
Published in issue: #4(64)/2017
DOI: 10.18698/2308-6033-2017-4-1604
Category: Power, Metallurgic and Chemical Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning
Currently there is a growing interest in producing liquefied natural gas (LNG) on a small scale due to the development and modernisation of the gas and transport industries. LNG production consumes a lot of energy, and small-scale production means that energy consumption and prime cost of the output increase even further. This makes a comparative analysis of the efficiency of a given technology specifying the origins of irreversibility quite relevant. The study deals with the best-known natural gas liquefaction technologies using refrigerant blends, SMR (APCI) and Limum (Linde), which are used in small-scale production. We supply the results of comparing their efficiency using the statistical entropy analysis method. We show that the Limum technology is more efficient due to the presence of an extra refrigeration stage. On the basis of experimental and computational data we also discovered that the thermodynamic efficiency of various LNG cycles depends on the minimum liquefaction work.
References
[1] Safin A.Kh., ed. Otchet-spravochnik. Malotonnazhnoe proizvodstvo i primenenie SPG - szhizhennogo prirodnogo gaza (metana) dlya bestruboprovodnogo gazosnabzheniya i v kachestve motornogo topliva dlya nazemnykh transportnykh sredstv. Tekhniko-investitsionnye pokazateli ustanovok [Report and Handbook. Small-scale manufacturing and usage of LNG - liquefied natural gas (methane) for pipeless gas supply and as engine fuel for ground vehicles. Technological and investment indicators for plants]. St. Petersburg, Prima-khimmash LLC Publ., 2013, 257 p.
[2] Arkharov A.M., Semenov V.Yu., Krasnonosova S.D. Khimicheskoe i neftegazovoe mashinostroenie - Chemical and Petroleum Engineering, 2015, no. 10, pp. 12-16.
[3] Safin A.Kh., ed. Otchet-spravochnik. Sovremennye i perspektivnye tekhnologii szhizheniya prirodnogo gaza [Report and handbook. Contemporary and promising natural gas liquefaction technologies]. Issue 2. St. Petersburg, Prima-khimmash LLC Publ., 2012, 320 p.
[4] Arkharov A.M. Osnovy kriologii. Entropiyno-statisticheskiy analiz nizkotemperaturnykh sistem [Foundations of cryology. Statistical entropy analysis of low-temperature systems]. Moscow, BMSTU Publ., 2014, 507 p.
[5] Arkharov A.M., Semenov V.Yu., Krasnonosova S.D. Khimicheskoe i neftegazovoe mashinostroenie - Chemical and Petroleum Engineering, 2015, no. 11, pp. 3-9.
[6] Arkharov A.M., Semenov V.Yu. Khimicheskoe i neftegazovoe mashinostroenie - Chemical and Petroleum Engineering, 2015, no. 10, pp. 7-11.
[7] Arkharov A.M., Semenov V.Yu., Krasnonosova S.D., Lebedev S.Yu., Kulbyakin V.P. Khimicheskoe i neftegazovoe mashinostroenie - Chemical and Petroleum Engineering, 2016, no. 7, pp. 19-24.
[8] Arkharov A.M., Arkharov I.A., Shevich Yu.A., Semenov V.Yu., Lavrov N.A., Krasnonosova S.D., Kolobova A.N. Khimicheskoe i neftegazovoe mashinostroenie - Chemical and Petroleum Engineering, 2010, no. 7, pp. 24-35.
[9] Chang H.M., Lim H.S., Choe K.H. Cryogenics, 2012, vol. 53 (12), pp. 642-647.
[10] Neksa P., Brendenga P.E., Drescher M., Norberg B. Journal of Natural Gas Science and Engineering, 2010, vol. 2, pp. 143-149.
[11] Neksa P., Brendenga P.E. Small scale natural gas liquefaction plants. International Congress of Refrigeration. SINTEF Energy Research, 2007, 9 p.
[12] Chang H.M. Combined Brayton-JT cycles with pure refrigerants for natural gas liquefaction. Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference. Washington, American Institute of Physics, 2012, vol. 1434, pp. 1779-1786.
[13] Remeljej C.W., Hoadley A. Energy, 2006, vol. 31 (12), pp. 2005-2019.
[14] Gong M. Exergy analysis of a small-scale LNG process utilizing a commercialized refrigeration compressor. 22nd International Congress of Refrigeration. Beijing, International Institute of refrigeration, 2012, vol. 1, pp. 94-99.