Secondary effects in low-temperature heat exchangers
Authors: Lavrov N.A., Sheremetyev S.S.
Published in issue: #4(64)/2017
DOI: 10.18698/2308-6033-2017-4-1603
Category: Power, Metallurgic and Chemical Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning
The article deals with the problem of secondary effects in low-temperature heat exchangers. We carried out a computation-based study of the effect that environment heat gain and axial thermal conductivity of a wall subjected to heat transfer have on the heat exchanger operation efficiency, for the purpose of determining the range of dimensionless numbers within which the secondary effects influence the heat transfer considerably. We studied steady-state operational modes of double-entry parallel flow and counter flow double pipe heat exchangers. We supply classic and refined mathematical models of heat transfer in a heat exchanger; we obtained analytical solutions for the differential equation systems supplied. We determined the values of dimensionless groups defining the numbers of heat transfer units, modified Biot numbers and other factors identifying the conditions under which neglecting secondary factors leads to the computational model used losing its precision.
References
[1] Hausen H. Warmeubertragung im Gegenstrom, Gleichstrom und Kreuzstrom [Heat transfer in counter flow, parallel flow and cross flow]. Berlin, Springer-Verlag Berlin Heidelberg, 1976, 432 p. [In Russ.: Hausen H. Teploperedacha pri protivotoke, pryamotoke i perekrestnom toke. Moscow, Energoatomizdat Publ., 1981, 384 p.].
[2] Efimova L.N., Makarov A.M., Sukhov V.I. Sravnitelnyy analiz raschetnykh modeley nestatsionarnykh protsessov teploobmena v razlichnykh teploobmennykh apparatakh [Comparative analysis of unsteady heat transfer process computational models in various heat exchangers]. Sb. nauchn. trudov NPO Kriogenmash [Proc. of the public joint-stock company "Сryogenmash"], 1975, no. 17, pp. 81-92.
[3] Danilenko T.K., Mikulin E.I., Kozlov V.N. Vliyanie teploprovodnosti stenki na protsess teploobmena v kanale [Effect of the wall thermal conductivity on the heat transfer process inside a channel]. Trudy MVTU [Proc. of the MHTS]. 1974, no. 193, pp. 160-165.
[4] Shevich Yu.A. Razrabotka i issledovanie vysokoeffektivnykh teploobmennykh apparatov matrichnogo i planarnogo tipov dlya kompaktnykh nizkotemperaturnykh sistem i ustanovok. Diss. dokt. tekhn. nauk [Development and studies of highly efficient matrix and planar type heat exchangers for compact low-temperature systems and plants. Dr. eng. sc. diss.]. Moscow, 2008, 243 p.
[5] Arkharov A.M. Kriogennye sistemy [Cryogenic systems]. Vol. 2: Osnovy proektirovaniya apparatov, ustanovok i sistem [Foundations of unit, plant and system design]. Smorodin A.I., ed. Moscow, Mashinostroenie Publ., 1999, 720 p.
[6] Gareeva D.T., Lavrov N.A., Sheremetev S.S. Delovoy zhurnal NEFTEGAZ.RU - NEFTEGAZ.RU Business Magazine, 2016, iss. 5-6, pp. 86-88.
[7] Arkharov A.M., Shishov V.V. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroenie - Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2013, no. 2 (91), pp. 84-97.
[8] Lavrov N.A. Mnogourovnevaya sistema modelirovaniya nestatsionarnykh i menyayushchikhsya rezhimov raboty nizkotemperaturnykh ustanovok. Diss. dokt. tekhn. nauk [Multi-level system for modeling unsteady-state and varying operational modes of low-temperature plants. Dr. eng. sc. diss.]. Moscow, 2013, 293 p.