Analysis of the concept of a long-term orbital station for the of interorbital cargo traffic serving
Authors: Sobolev I.A., Leonov V.V., Volkova T.V., Bechasnov P.M.
Published in issue: #4(64)/2017
DOI: 10.18698/2308-6033-2017-4-1609
Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units
The article presents an analysis of the concept of a long-term orbital station operating on a low near-equatorial orbit and serving interorbital transport operations in terms of independent economic efficiency. To generate revenue in the geostationary vehicle launch market the use of an orbital transfer vehicle operated from the space station is proposed. The near-equatorial orbit has a number of advantages in particular the radiation environment, allowing for the application of scientific and technical solutions not previously used in the design of orbital stations. The concept of a promising single-module orbital station with the means for creating artificial gravity and the possibility of increasing the habitable volume by deployment of inflatable rigidizable structures is proposed. The effect of artificial gravity on the comfort and productivity of crew is shown, a possible option of living and working spaces of the station is suggested, if available. The possibility of reducing expenses and increasing revenues in comparison with the implemented projects of orbital stations is shown.
References
[1] Sullivan B.R., Akin D.L. Satellite Servicing Opportunities in Geosynchronous. AIAA Space 2012 Conference and Exposition, September 11-13, 2012 Pasadena CA, USA. AIAA-2012-5261.
[2] Galkevich I.A. Razrabotka instrumentariya opredeleniya tekhniko-ekonomicheskikh parametrov kosmicheskikh telekommunikatsionnykh proektov. Diss. kand. econ. nauk [Development of a tool for determining the technical and economic parameters of space telecommunications projects. Cand. econ. sc. diss.]. Moscow, BMSTU Publ., 2015.
[3] Serduk V.K., Tolyarenko N.V., Khlebnikova N.N. Transportnye sredstva obespe-cheniya kosmicheskikh program [Vehicles for space programs]. Mishin V.P., ed. Moscow, VINITI Publ., 1990, 274 p.
[4] Cosmo M.L. Lorenzini E.C. Tethers in Space. Handbook. Smithsonian Astrophysical Observatory. Prepared for NASA. Marshall Space Flight Center Publ., 1997, 241 p.
[5] RKK "Energia " predlagaet letet na Lunu "Ryvkom " s MKS [Rocket and Space Corporation Energia proposes to fly to the Moon from the ISS by "Jerk"]. Available at: http://tass.ru/kosmos/3313272 (accessed December 21, 2016).
[6] Zaytseva A.Yu., Masley V.N., Galaburda D.A., Belousov K.G., Moskalev S.I., Zaytsev S.S., Shovkoplyas Yu.A. Kosmicheskaya nauka i tekhnologiya - Space Science and Technology, 2015, vol. 21, no. 5, pp. 24-27.
[7] How much does it cost? ESA. Available at: http://www.esa.int/Our_Activities/Human_Spaceflight/International_Space_Station/How_much_does_it_cost (accessed December 08, 2016).
[8] Cheberko I. Roskosmos sokratit zatraty na obsluzhivanie MKS [Roskosmos will reduce the ISS maintenance expenditures]. Izvestia. January 11, 2016. Available at: http://izvestia.ru/news/600977 (accessed December 08, 2016).
[9] Geoperekhodnaya orbita [Geostationary transfer orbit]. Available at: http://rusrocket.narod.ru/gto.html (accessed December 01, 2016).
[10] Kennedy K.J. Inflatable habitats technology development. NASA Johnson Space Center, 2000. Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050182969_2005179269.pdf (accessed December 12, 2016).
[11] Messerschmid E., Reinhold B. Space Stations. Systems and Utilization. Springer Publ., Berlin, 1999, 566 p.
[12] Panasuk M.I. Model kosmosa [Space model]. Moscow, Research Institute of Nuclear Physics, MGU Publ., 2007, 873 p.
[13] Shamsutdinov S. Otryadu kosmonavtov RKK "Energia" 40 let [The Cosmonauts’ squad of the S.P. Korolev Rocket and Space Corporation Energia is 40 years old]. Novosti kosmonavtiki - Space Exploration News, 2006, no. 7 (282). Available at: http://novosti-kosmonavtiki.ru/mag/2006/1031/23901/
[14] Leach N. Space Architecture: The New Frontier for Design Research. John Wiley & Sons Inc. Publ., 2014, 137 p.
[15] Norris G. SpaceX Unveils ‘Step Change’ Dragon ‘V2’. AviationWeek.com May 30, 2014. Available at: http://aviationweek.com/space/spacex-unveils-step-change-dragon-v2 (accessed December 09, 2016).
[16] Coppinger R. Airbus’ Adeline Project Aims to Build Reusable Rockets and Space Tugs. Space.com Available at: http://www.space.com/29620-airbus-adeline-reusable-rocket-space-tug.html (accessed December 10, 2015).
[17] Adams R.B., Alexander R., Chapman J., Fincher S., Hopkins R., Philips A., Polsgrove T., Litchford R., Patton B., Statham G., White S., Thio Y.C.F. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets. Marshall Space Flight Center, 2003. Nov. 03 NASA TP-2003-212691.
[18] Pugachenko S.E. Proektirovanie orbitalnykh stantsiy [Design of orbital stations]. Moscow, BMSTU Publ., 2009, 92 p.
[19] BEAM Facts, Figures, FAQs. NASA. Available at: https://www.nasa.gov/feature/beam-facts-figures-faqs (accessed December 11, 2015).
[20] Keeper G., Soylemez E. Deployable space structures. Conference Paper July 2009 with 61 Reads. IEEE Xplore Conference: Recent Advances in Space Technologies, 2009, pp. 131-138. DOI: 10.1109/RAST.2009.5158183
[21] Raykunov G.G., Komkov V.A., Melnikov V.M., Kharlov B.N. Tsentrobezhnye beskarkasnye krupnogabaritnye kosmicheskie konstruktsii [Centrifugal frameless large-sized space structures]. Moscow, Fizmatlit Publ., 2009, 448 p.
[22] Scarborough S.E., Cadogan D.P. Applications of Inflatable Rigidizable Structures, SAMPE Symposium, Long Beach California, 2006, vol. 51, pp. 1-15.
[23] Reznik S.V., Polezhaev Yu.V. Materialy ipokrytiya v ekstremalnykh usloviyakh. Vzglyad v budushchee [Materials and coatings under extreme conditions. A look into the future]. Moscow, BMSTU Publ., 2002.
[24] BEAM: The Experimental Platform. Bigelow aerospace Available at: http://bigelowaerospace.com/beam/ (accessed December 12, 2016).
[25] Lai C.Y., You Z., Pellegrino S. Shape and Stress Analysis of Symmetric Collapsible Rib-Tensioned Surface Reflectors. Available at: http://www.its.caltech.edu/~sslab/PUBLICATIONS/Shape%20and%20stress%20analysis%20of%20symmetric%20CRTS%20reflectors_1997.pdf (accessed December 14, 2016).
[26] Tumanov A.V., Zelentsov V.V., Shcheglov G.A. Osnovy komponovki bortovogo oborudovaniya kosmicheskikh apparatov [The fundamentals of the spaceborne equipment layout]. 2nd revised & enlarged ed. Moscow, BMSTU Publ., 2017. 576 p.
[27] Smith S.C. Adjusting for Inflation. Space KSC. Available at: http://spaceksc.blogspot.ru/2013/01/adjusting-for-inflation.html (accessed December 08, 2013).
[28] Feoktistov K.P. Kosmicheskaya tekhnika. Perspektivy razvitiya [Space technology. Development prospects]. Moscow, BMSTU Publ., 1997.
[29] Hollister D. Reusable Earth Departure Stage. Hop’s blog. Available at: http://hopsblog-hop.blogspot.ru/2014/05/reusable-earth-departure-stage.html (accessed November 08, 2016).
[30] Gilster P. An Asteroid Deflection Investigation - Centauri Dreams. Hop’s blog. Available at: http://hopsblog-hop.blogspot.ru/2015/05/eml2.html (accessed December 05, 2016).
[31] Dubois L.H. DARPA’s Approach to Innovation: an Alternative Model for Funding Cutting-Edge Research and Development. Available at: http://gcep.stanford.edu/pdfs/lh-ivzYPrcfEnjOxV0q59g/5_11_dubois_breakthrough.pdf (accessed December 07, 2013).
[32] Cheberko I. Roskosmos sdelaet novuyu raketu dlya "Morskogo starta" [Roskosmos will make a new rocket for the" Sea Launch"]. Izvestia. September 30, 2016. Available at: http://izvestia.ru/news/635290 (accessed December 30, 2016).
[33] S7 predlagaet sozdat orbitalnyy kosmodrom na baze rossiyskogo segmenta MKS [S7 proposes to create an orbital space-launch complex based on the Russian segment of the ISS]. TASS. Available at: http://tass.ru/kosmos/3685306 (accessed October 8, 2013).