Mathematical model for backup large-area solar battery disclosure system
Authors: Bushuev A.Yu.
Published in issue: #2(62)/2017
DOI: 10.18698/2308-6033-2017-2-1584
Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units
To improve rope systems multilink solar battery disclosure liability, the article proposes a backup disclosure system consisting of a lift mechanism (jack), driven by the electric drive and a rope system synchronization. The mechanism's main feature is a variable ratio depending on the first link steering angle. Rope synchronization system consists of a roller set connected by cables in a certain way, and the two types of gear mechanisms to ensure the required gear ratio. The article proposes the power mechanism schematic diagram and the synchronization system kinematics. The study derives the transmission dependence from the engine to the first link, gives a disclosure system mathematical model. In order to determine the disclosure process basic characteristics, we use Lagrange equation of the second kind made up for a solar battery kinetic energy and linkage simulation (hinged panels weight is attached), where we assume each link to be an absolutely rigid body. To determine the connections and efforts in cables, we use the equations d'Alembert. The study suggests an iterative method of accounting for rope synchronization systems elastic deformation.
References
[1] Bakunin D.V., Borzykh S.V., Ososov N.S, Schiblev Yu.N. Matematicheskoe modelirovanie - Mathematical Models and Computer Simulations, 2004, vol. 16, no. 6, pp. 86-92.
[2] Ilyasova I.G. Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo Universiteta im. akademika S.P. Koroleva - Journal "Vestnik of the Samara State Aerospace University", 2012, no. 4 (35), pp. 88-93.
[3] Krylov A.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie - Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2011, no. 1, pp. 106-111.
[4] Yudintsev V.V. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal Polet - Russian Scientific and Technical Journal Polet (Flight), 2012, no. 5, pp. 28-33.
[5] Kuznetsova A.O. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva - Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva (VestnikSibGAU), 2005, no. 3, pp. 135-138.
[6] Panichkin V.I. Izvestiya AN SSSR. MTT - Mechanics of Solids. A Journal of the Russian Academy of Sciences, 1992, no. 4, pp. 183-190.
[7] Yudintsev V.V. Dinamika sistem tverdykh tel [Dynamics of systems of rigid bodies]. Samara University Publ., 2008, 115 p.
[8] Featherstone R. Rigid Body Dynamics Algorithms. Springer Science, Business Media, LLC Publ., 2008, 272 p.
[9] Aslanov V., Kruglov G., Yudintsev V. Newton-Euler equations of multibody systems with changing structures for space applications. Acta Astronautica Journal, Elsevier Publ., 2011. DOI: 10.1016/j.actaastro.2010.11.013
[10] Narayana B.L., Nagaray B.P., Nataraju B.S. Deployment Dynamics of Solar Array with Body Rates. Proc. of the 2000 International ADAMS User Conference.
[11] Mengali G., Salvetti A., Specht B. Multibody Analysis of Solar Array Deployment using Flexible Bodies. Universita di Pisa, Facolta di Ingegneria Corso di Laurea in Ingegneria Aerospaziale Publ., 2007.
[12] Bushuev A.Yu., Farafonov B.A. Matematicheskoe modelirovanie i chislennye metody - Mathematical Modeling and Computational Methods, 2014, no. 2 (2), pp. 101-114.
[13] Bushuev A.Yu., Farafonov B.A. Inzhenerny zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2015, no. 7 (43). DOI: 10.18698/2308-6033-2015-7-1431
[14] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. In 4 vols. Vol. 4. Fundamentals of Solid Mechanics]. Moscow, BMSTU Publ., 2013, 624 p.