Experimental determination of thermal conductivity of composite materials in a wide range of values at room temperature
Authors: Chistov A.N., Kladov M.Yu., Pronin I.B., Smirnov A.S.
Published in issue: #9(93)/2019
DOI: 10.18698/2308-6033-2019-9-1920
Category: Metallurgy and Science of Materials | Chapter: Science of Materials in Mechanical Engineering
In developing new composite materials and solving heat transfer problems, the thermal conductivity is an important characteristic that must be reliably determined. This often requires samples of the smallest dimensions, which is relevant for the production of pilot batches of material, as well as if they are taken directly from the product, when the amount of material is very limited. Most common methods for determining thermal conductivity require samples of relatively large sizes. To measure thermal conductivity on small-sized samples, an upgraded benchtop instrument is introduced. The instrument uses the relative method of longitudinal heat flux, which consists in a comparative measurement of a sample located between the heater and the standard in a stationary thermal mode. This paper presents the instrument design details, the requirements for the samples, explains the calibration features and the measurement procedure. The measurement results in a number of composite materials, as well as in materials with well-studied properties are analyzed. Findings show that the error of determining the thermal conductivity on a modernized instrument does not exceed several percent.
References
[1] Vey P.M. Fiziko-tekhnicheskie osnovy sozdaniya kompozitsionnykh materialov na baze promyshlennykh poroshkov volframa. Diss. kand. tekh. nauk [Physicotechnical fundamentals of creating composite materials based on industrial tungsten powders. Cand. eng. sc. diss.]. Kaluga, 2015, 115 p.
[2] Chishkala V.A., Ryabchikov D.L., Klochko E.V., Kudin D.V., Lototskiy N.M. Vestnik Harkovskogo Universiteta. Ser. Yadra, Chastitsy, Polya — The Journal of Kharkiv National University, Physical series “Nucleus, Particles, Fields”, 2008, no. 794, iss. 1/37, pp. 81–84.
[3] GOST R 54254–2010. Materialy uglerodnye. Metod opredeleniya teploprovodnosti pri komnatnoy temperature [State Standard R 542542010 Carbon materials. The method for determining thermal conductivity at room temperature]. Standartinform Publ., 2013, 8 p.
[4] Platunov E.S., Baranov I.V., ed. Teplofizicheskie izmereniya [Thermophysical measurements]. St. Petersburg State University of Low-Temperature and Food Technologies Publ., 2010, 738 p.
[5] Kladov M.Yu. Eksperimentalnoe opredelenie teploprovodnosti teplozashhitnykh materialov v diapazone temperatur ot 20 оС do 1200 оС [Experimental study of thermal conductivity of heat-shielding materials in the temperature range from 20 °C to 1200 °C]. Sb. dokl. Tretyey Vseros. konf. po ispytaniyam i issledovaniyam svoystv materialov «TestMat-2013» [Proc. of the Third All-Russian Conf. for testing and research of the properties of materials "TestMat-2013"]. Moscow, FGUP GNCRF «VIAM», 2013 (1 CD-ROM).
[6] Araki N., Tang D.W., Makino A., Hashimoto M., Sano T. Transient Characteristics of Thermal Conduction in Dispersed Composites. Int. J. of Thermophysics, 1998, vol. 19 (4), pp. 1239–1251.
[7] Brzezinski A., Tleubaev A. Effect of Interface Resistance on Measurements of Thermal Conductivity of Composites and Polymers. Proc. of the 30th North American Thermal Analysis Society Conference. Pittsburgh 23–25 September 2002, Lubrizoil Corp., pp. 512–517.
[8] Ipatov Yu.S., Leykum V.I., Oleynik B.M., Patovskaya Z.K. Pribory dlya izmereniya teploprovodnosti [Instruments for measuring thermal conductivity]. Trudy VNIIM [Proc. of All-Russian Research Institute of Metrological Service]. Moscow, 1962, no. 63 (123), pp. 3–24.
[9] Osipova V.A. Eksperimentalnoe issledovanie protsessov teploobmena. [An experimental study of heat transfer processes]. Second ed., Moscow, Energiya Publ., 1969, 392 p.
[10] Platunov E.S., Buravoy S.E., Kurepin V.V., Petrov G.S. Teplofizicheskie izmereniya i pribory [Thermophysical measurements and instruments]. Leningrad, Mashinostroenie Publ., 1986, 256 p.
[11] Sergeev O.A., Filatov L.I., Frenkel I.M. Izmeritelnaya tekhnika — Measurement Techniques, 1971, no. 7, pp. 35–36.
[12] Babichev A.P., Babushkina N.A., red. Fizicheskie velichiny: Spravochnik [Physical quantities]. Moscow, Energoatomizdat Publ., 1991, 1232 p.
[13] Nagorny V.G., Kotosonov A.S., ed. Svoystva konstruktsionnykh materialov na osnove ugleroda. Spravochnik. [Properties of carbon-based structural materials]. Moscow, Metallurgiya Publ., 1975, 336 p.