Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Structuring the functional diffusion titanium coatings formed on the solid alloys of WC-Co and TiC-WC-Co types

Published: 28.01.2019

Authors: Bobylyov E.E.

Published in issue: #1(85)/2019

DOI: 10.18698/2308-6033-2019-1-1845

Category: Metallurgy and Science of Materials | Chapter: Science of Materials in Mechanical Engineering

The article investigates the process of diffusion saturation by titanium of the cutting carbide-tipped tool from Pb–Bi–Li–Ti medium. It is found out that the coatings are formed on the basis of titanium carbide TiC, the structure also contains such constituents as intermetallides Ti2Co and α-Ti as the binding substances. Besides, the structure of the WC–8%Co alloy coatings has tungsten carbide WC. The microhardness of the coatings on the  WC–8%Co alloy can be 24750 MPa, and on the 15%TiC–WC–6%Co alloy — 30,000 MPa. Furthermore, the coating growth rate depends on the solid alloy composition, so on the 15%TiC–WC–6%Co alloy the coatings are formed more intensively. In addition, the coating growth rate decreases with an increase in the duration of the plates’ exposure in a saturating medium. The coating growth rate at a temperature 1100 ºC changes from  0.116 µ/min at the time of saturation 30 min to 0.046 µ/min at the time of saturation  120 min for the 15%TiC–WC–6%Co alloy. The coating growth rate on the WC–8%Co alloy changes from 0,106 µ/min to 0,045 µ/min. With decreasing temperature, the rate of coating formation also decreases


References
[1] Sokolov A.G., Bobylyov E.E. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) — Obrabotka Metallov — Metal Working and Material Science, 2016, no. 2 (71), pp. 59–69.
[2] Sokolov A.G., Bobylyov E.E. Diffusion Saturation by Titanium from Liquid-Metal Media as Way to Increase Carbide-Tipped Tool Life. Solid State Phenomena. 2017, vol. 265, pp. 181–186.
[3] Platonov G.L., Anikin V.N., Anikeev A.I. Poroshkovaya metallurgiya — Powder Metallurgy and Metal Ceramics, 1980, no. 8, pp. 48–52.
[4] Sandgren J.-E. Structure and properties of TiN coatings. Thin Solid Films, 1985, vol. 128, pp. 21–44.
[5] Beresnev V.M., Pogrebnyak A.D., Azarenkov N.A., Kirik G.V., Erdybaeva N.K., Ponaryadov V.V. Uspekhi fiziki metallov — Progress in Physics of Metals, 2007, vol. 8, no. 3, pp. 171–246.
[6] Andreev A.A., Kunchenko V.V., Shulaev V.M., Kitaevskiy K.M., Chelombitko A.N. Issledovanie mnogosloynykh vakuumno-dugovykh iznosostoykikh pokrytiy, podvergnutykh termoobrabotke [Investigation of multi-layer vacuum-arc wear-resistant coatings subjected to heat treatment]. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Plenki-2002” [Proc. of International Scientific and Technical Conference “Films-2002”]. Moscow, MIREA Publ., 2002, pp. 206–209.
[7] Daniel J., Soucek P., Zábranský L., Buršíková V., Stupavská M., Vašina P. Surface and Coatings Technology, 2017, vol. 328, pp. 462–468. DOI: 10.1060/j.surfcoat.2017.06.076
[8] Sokolov A.G., Mansia S. Tekhnologiya metallov — Technology of Metals, 2012, no. 2, pp. 38–43.
[9] Loskutov V.F., Khizhnyak V.G., Kunitskiy Yu.A., Kindrachuk M.V. Diffuzionnye karbidnye pokrytiya [Diffusion carbide coatings]. Kyiv, Tekhnika Publ., 1991, 168 p.
[10] Reva A.T., Gorbach V.G., Kulyba N.A., Bilchenko A.V. Sposob polucheniya diffuzionnykh pokrytiy [The method of obtaining diffusion coatings]. Inventor’s Certificate USSR, no. 1145051, 1985.