Structuring the functional diffusion titanium coatings formed on the solid alloys of WC-Co and TiC-WC-Co types
Authors: Bobylyov E.E.
Published in issue: #1(85)/2019
DOI: 10.18698/2308-6033-2019-1-1845
Category: Metallurgy and Science of Materials | Chapter: Science of Materials in Mechanical Engineering
The article investigates the process of diffusion saturation by titanium of the cutting carbide-tipped tool from Pb–Bi–Li–Ti medium. It is found out that the coatings are formed on the basis of titanium carbide TiC, the structure also contains such constituents as intermetallides Ti2Co and α-Ti as the binding substances. Besides, the structure of the WC–8%Co alloy coatings has tungsten carbide WC. The microhardness of the coatings on the WC–8%Co alloy can be 24750 MPa, and on the 15%TiC–WC–6%Co alloy — 30,000 MPa. Furthermore, the coating growth rate depends on the solid alloy composition, so on the 15%TiC–WC–6%Co alloy the coatings are formed more intensively. In addition, the coating growth rate decreases with an increase in the duration of the plates’ exposure in a saturating medium. The coating growth rate at a temperature 1100 ºC changes from 0.116 µ/min at the time of saturation 30 min to 0.046 µ/min at the time of saturation 120 min for the 15%TiC–WC–6%Co alloy. The coating growth rate on the WC–8%Co alloy changes from 0,106 µ/min to 0,045 µ/min. With decreasing temperature, the rate of coating formation also decreases
References
[1] Sokolov A.G., Bobylyov E.E. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) — Obrabotka Metallov — Metal Working and Material Science, 2016, no. 2 (71), pp. 59–69.
[2] Sokolov A.G., Bobylyov E.E. Diffusion Saturation by Titanium from Liquid-Metal Media as Way to Increase Carbide-Tipped Tool Life. Solid State Phenomena. 2017, vol. 265, pp. 181–186.
[3] Platonov G.L., Anikin V.N., Anikeev A.I. Poroshkovaya metallurgiya — Powder Metallurgy and Metal Ceramics, 1980, no. 8, pp. 48–52.
[4] Sandgren J.-E. Structure and properties of TiN coatings. Thin Solid Films, 1985, vol. 128, pp. 21–44.
[5] Beresnev V.M., Pogrebnyak A.D., Azarenkov N.A., Kirik G.V., Erdybaeva N.K., Ponaryadov V.V. Uspekhi fiziki metallov — Progress in Physics of Metals, 2007, vol. 8, no. 3, pp. 171–246.
[6] Andreev A.A., Kunchenko V.V., Shulaev V.M., Kitaevskiy K.M., Chelombitko A.N. Issledovanie mnogosloynykh vakuumno-dugovykh iznosostoykikh pokrytiy, podvergnutykh termoobrabotke [Investigation of multi-layer vacuum-arc wear-resistant coatings subjected to heat treatment]. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Plenki-2002” [Proc. of International Scientific and Technical Conference “Films-2002”]. Moscow, MIREA Publ., 2002, pp. 206–209.
[7] Daniel J., Soucek P., Zábranský L., Buršíková V., Stupavská M., Vašina P. Surface and Coatings Technology, 2017, vol. 328, pp. 462–468. DOI: 10.1060/j.surfcoat.2017.06.076
[8] Sokolov A.G., Mansia S. Tekhnologiya metallov — Technology of Metals, 2012, no. 2, pp. 38–43.
[9] Loskutov V.F., Khizhnyak V.G., Kunitskiy Yu.A., Kindrachuk M.V. Diffuzionnye karbidnye pokrytiya [Diffusion carbide coatings]. Kyiv, Tekhnika Publ., 1991, 168 p.
[10] Reva A.T., Gorbach V.G., Kulyba N.A., Bilchenko A.V. Sposob polucheniya diffuzionnykh pokrytiy [The method of obtaining diffusion coatings]. Inventor’s Certificate USSR, no. 1145051, 1985.