Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Substantiation of technological parameters in the production of composite polyphenylene sulfide-based tape

Published: 20.07.2021

Authors: Smirnov G.K., Reznik S.V., Gareev A.R., Khodnev A.D.

Published in issue: #7(115)/2021

DOI: 10.18698/2308-6033-2021-7-2098

Category: Metallurgy and Science of Materials | Chapter: Powder Metallurgy and Composite Materials

The purpose of the study was to select technological parameters of the production line of unidirectional thermoplastic polyphenylene sulfide-based tapes. The selection was made relying on the variation of the tape speed, the temperature of the sub-melting furnace, and the calendering module in the simulation of heat transfer processes. Modeling of heat transfer was based on the results of tests to determine the temperatures of phase transitions of a thermoplastic polymer in the composition of composite material and the dependence of the heat capacity of the composite on temperature. The indicated properties of the material were determined by analyzing the dependences obtained during differential scanning calorimetry and thermogravimetric analysis. As a result, the allowable range of distances between the polymer binder melting furnace and the calendering module was determined, which provides the necessary tape temperatures at the stages under consideration and the manufacturability of production. The permissible range of distances between the calendering module and the coiling module was also determined.


References
[1] Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2017, no. 5, pp. 420–436.
[2] Garvey R.E., Andriulli J.B., Mckeever J.W., Rudness R.V. Minimum-gage, maximum-stiffness graphite. Thermoplastic spacecraft structures. Polymer composites, 1991, vol. 12, no. 2, pp. 108–118.
[3] Kominar V., Wagner H.D. Some matrix failure peculiarities of unidirectional fibre-reinforced plastics and layers in laminated composites. Composites, 1994, vol. 25, no. 1, pp. 5–10.
[4] Golovkin G.S., Dmitrenko V.P. Nauchnye osnovy proizvodstva izdeliy iz termoplastichnykh kompozitsionnykh materialov [Scientific fundamentals of the manufacture of products from thermoplastic composite materials]. Moscow, INFRA-M Publ., 2020, 471 p.
[5] Mamkhegov R.M. Sovershenstvovanie tekhnologiy polucheniya polifenilensul’ida s ispolzovaniem kataliticheskikh sistem na osnove modifitsirovannogo montmorillonita. Dis. … kand. khim. nauk [Improving the technology of polyphenylene sulfide production using catalytic systems based on modified montmorillonite. Cand. chem. sc. diss.]. Nalchik, 2019, 116 p.
[6] Bartenev G.M., Zelenev Yu.V. Fizika i mekhanika polimerov [Physics and mechanics of polymers]. Moscow, Vysshaya shkola Publ., 1983, 391 p.
[7] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow, Energiya Publ., 1977, 344 p.
[8] Martynenko O.G., Sokovishin Yu.A. Svobodno-konvektivny teploobmen: Spravochnik [Free convective heat transfer: handbook]. Moscow, Nauka i tekhnika Publ., 1982, 400 p.
[9] Degtyarev A.V., Potapov A.M. Tekhnicheskaya diagnostika i nerazrushayuschiy control — Technical Diagnostics and Nondestructive Testing, 2012, no. 3, pp. 20–26.
[10] Kablov E.N., Gunyaev G.M., Ilchenko S.I., Krivonos V.V., Rumyantsev A.F., Kavun T.N., Komarova O.A., Ponomarev A.N., Deev I.S., Aleksashin V.M. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2004, no. 2, pp. 25–36.
[11] Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow, Energiya Publ., 1975, 488 p.