Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Synthesis and properties of oligohexamethyleneguanidine palmitate for the modification of organosoluble epoxy compounds

Published: 13.10.2017

Authors: Senchikhin I.N., Matveev A.V., Zhavoronok E.S., Uryupina O.Ya., Roldughin V.I.

Published in issue: #12(72)/2017

DOI: 10.18698/2308-6033-2017-12-1701

Category: Metallurgy and Science of Materials | Chapter: Powder Metallurgy and Composite Materials

The palmitates of oligohexamethylene guanidine have been synthesized and characterized. We have established their more pronounced solubility in comparison with hydrochlorides in epoxy oligomers, i.e. glycidyl ethers of diphenylolpropane Epikote 828 and oligooxypropylene polyol Laproxide 703. As a result a chemical interaction occurs between the starting materials and palmitate of oligohexamethyleneguanidine, leading to the formation of adducts of epoxy oligomers with oligohexamethyleneguanidine, fully compatible with the original oligomers. It is recommended to use oligohexamethylene guanidine for epoxy compositions with aliphatic hardeners, for which strict requirements for high glass transition temperature are not required. The temperature of the beginning of chemical interaction of epoxy oligomers with salts of oligohexamethyleneguanidine and palmitic acid is much higher than the reaction temperature of epoxy oligomers with aliphatic amine hardeners. This allows the introduction of oligohexamethylene guanidine into epoxyamine compositions by first separately preparing adducts with epoxy oligomers that can be used as a modifying biocide additive for conventional formulations (corrected for the stoichiometric content of the hardener).


References
[1] Vointseva I.I., Gembitsky P.A. Poliguanidiny - dezinfektsionnyye sredstva i polifunktsional’nyye dobavki v kompozitsionnyye materialy [Polyguanidines are disinfection agents and polyfunctional additives in composite materials]. Moscow, LKM-press, 2009, 303 p.
[2] Kedik S.A. Mineral’nyye i pit’yevyye vody - Mineral and drinking water, 20122013, no. 2, p. 80.
[3] Kedik S.A., Shatalov D.O., Beksaev S.G., Sedishev I.P., Zhavoronok E.S., Suslov V.V., Panov A.V. Vestnik MITHT - Herald of the Moscow Institute of Physics and Technology, 2014, vol. 9, p. 32.
[4] Shatalov D.O., Kedik S.A., Panov A.V., Sedishev I.P., Suslov V.V., Kotova Yu.A., Aleksandrova D.V., Ivanov I.S. Butlerovskiye soobshcheniya - Butlerov Communications, 2014, vol. 38, p. 53.
[5] Vointseva I.I., Kasennov I.V., Skorokhodova O.N., Valetsky P.M., Tseitlin G.M. Epoxy composition for biocidal coatings. Patent of the Russian Federation No. 2190648. The date of application 15.10.2001, the date of publication 10.10.2002.
[6] Khozin V.G. Usileniye epoksidnykh polimerov [Strengthening of epoxy polymers]. Kazan, PPC "House of the Press", 2004, 446 p.
[7] Pascault J.-P., Williams R.J.J., ed. Epoxy Polymers. New Materials and Innovations. Weinheim, Wiley-VCH, 2010, 390 p.
[8] Petrie E.M. Epoxy Adhesive Formulations. New York, McGraw-Hill, 2006, 530 p.
[9] McKenna G.B. Chapter 7. Physical Aging in Glasses and Composites. In: LongTerm Durability of Polymeric Matrix Composites. K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner, eds. Springer-Verlag, 2012, pp. 237-309.
[10] Kong E.S.-W. Physical Aging in Epoxy Matrices and Composites. Advances in Polymer Science, vol. 80. Berlin, Springer-Verlag, 1986, pp. 125-171.
[11] Odegard G.M., Bandyopadhyay A. Physical Aging of Epoxy Polymers and Their Composites J. of Polymer Science, Part B: Polymer Physics, 2011, vol. 49, p. 1695.
[12] Wisanrakkit G., Gillham J.K. Effect of Physical Annealing on the Dynamic Mechanical Properties of a High-Tg Amine-cured Epoxy System. J. Appl. Polym. Sci, 1991, vol. 42, p. 2465.
[13] Pang K.P., Gillham J.K. Annealing Studies on a Fully Cured Epoxy Resin: Effect of Thermal Prehistory and Time and Temperature of Physical Annealing. J. Appl. Polym. Sci., 1989, vol. 38, p. 2115.
[14] Manzella A.F., Gama B.A., Gillespie (Jr.) J.W. Effect of Punch and Specimen Dimensions on the Confined Compression Behavior of S-2 Glass/epoxy Composites. Composite Structures, 2011, vol. 93, p. 1726.
[15] Misumi J., Ganesh R.H., Sockalingam S., Gillespie J.W. Experimental Characterization of Tensile Properties of Epoxy Resin by Using Micro Fiber Specimens. Journal of Reinforced Plastics and Composites, 1999, vol. 71, p. 787.
[16] Senchikhin I.N., Zhavoronok E.S., Kharitonova E.V., Roldugin V.I. Tonkiye khimicheskiye tekhnologii - Fine Chemical Technologies, 2016, vol. 11, p. 98.
[17] Zhavoronok E.S., Panov A.V., Chalykh A.E., Kolesnikova E.F. Plasticheskiye massy - Plast. Masses, 2009, no. 6, p. 23.
[18] Kedik S.A., Bocharova O.A., Ha Kam An, Panov A.V., Sedishev I.P., Zhavoronok E.S., Timofeeva G.I., Suslov V.V., Beksaev S.G. Khimiko-farmatsevticheskiy zhurnal - Pharmaceutical Chemistry Journal, 2010, vol. 44, p. 40.
[19] Smith A. Lee. Applied infrared spectroscopy. Fundamentals, techniques, and analytical problem-solutions, Wiley, 1979, 336 p. [In Russ.: Smith A. Prikladnaya IK-spektroskopiya. Moscow, Mir Publ., 1986, 328 p.].
[20] Zhavoronok E.S., Senchikhin I.N., Kolesnikova E.F. Chalykh A.E., Kiselev M.R., Roldugin V.I. Vysokomolekulyarnyye soyedineniya. Series B - Polymer Science. B, 2010, vol. 52, p. 235.