Kinetic parameters of the thermal decomposition of cobalt hydroxide nanopowder under isothermal conditions
Authors: Nguyen T.H.
Published in issue: #11(107)/2020
DOI: 10.18698/2308-6033-2020-11-2035
Category: Metallurgy and Science of Materials | Chapter: Nanotechnologies and Nanomaterials Material Science
The paper focuses on the kinetic parameters of synthesizing Co3O4 nano-powder by thermal decomposition of hydroxide Co(OH)2 under isothermal conditions. The thermal decomposition of Co(OH)2 nano-powder under isothermal conditions was carried out in a tube furnace in the temperature range from 150 to 200 °C. Findings of research show that the thermal decomposition rate constant at 200 °C is approximately 2.7 times higher than that at 150 °C. Accordingly, for 80 min of thermal decomposition, the process accelerates 1.8 times. The activation energy of this process is approximately 33 kJ/mol, which indicates a mixed reaction mode. The study shows that Co3O4 nanoparticles obtained at the temperature of the maximum thermal decomposition rate, i.e. 180 °C, mainly consist of elongated ovoid and acicular aggregates with an average particle value of 47 nm and the length of up to 200 nm.
References
[1] Syam Sundar L., Singh Manoj K., Antonio Pereira M.B., Antonio Sousa C.M. The Cobalt Oxide-Based Composite Nanomaterial Synthesis and Its Biomedical and Engineering Applications. Cobalt Compounds and Applications, 2019, pp. 1–19. DOI: 10.5772/intechopen.88272
[2] Hafeez M., Shaheen R., Akram B., et al. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express, 2020, vol. 7, no. 2, 025019. DOI: 10.1088/2053-1591/ab70dd
[3] Bhushan B. Springer Handbook of Nanotechnology. 4th edition. Berlin, Springer-Verlag Heidelberg, 2017, 1500 p.
[4] Dahman Y. Nanotechnology and Functional Materials for Engineers. 1st edition. Elsevier, Health Sciences Division, 2017, 282 p.
[5] Adekunle A.S., John Oyekunle A.O., Durosinmi L.M., et al. Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater. Nano-Structures & Nano-Objects, 2020, vol. 21, art. 100405. DOI: 10.1016/j.nanoso.2019.100405
[6] Ghaem E.N., Dorranian D., Sari A.H. Characterization of cobalt oxide nanoparticles produced by laser ablation method: Effects of laser fluence. Physica E: Low-dimensional Systems and Nanostructures, 2020, vol. 115, art. 113670.DOI: 10.1016/j.physe.2019.113670
[7] Shatrova N., Yudin A., Levina V., Novakova V., Dzidziguri E., Kuznetsov D., Perov N., Issi J. Characteristics of Co3O4 and cobalt nanostructured microspheres: Morphology, structure, reduction process, and magnetic properties. Materials Research Bulletin, 2018, vol. 99, pp. 189–195. DOI: 10.1016/j.materresbull.2017.11.017
[8] Novakova A., Dolzhikova A.V., Shatrova N.V., Levina V.V. Vestnik Moskovskogo Universiteta. Seriia 3. Fizika. Astronomiia — Moscow University Physics Bulletin, 2017, no. 4, pp. 22–26.
[9] Nguyen V.M., Konyukhov Yu.V., Ryzhonkov D.I. Izvestiya vuzov. Chernaya metallurgiya — Izvestiya. Ferrous Metallurgy, 2018, vol. 61, no. 2, pp. 96–101. DOI: 10.17073/0368-0797-2018-2-96-101
[10] Ryzhonkov D.I., Konyukhov Y.V., Nguyen V.M. Kinetic regularities and mechanisms of hydrogen reduction of nanosized oxide materials in thin layers. Nanotechnologies in Russia, 2017, vol. 12, no. 11-12, pp. 620–626. DOI: 10.1134/S1995078017060076
[11] Ryzhonkov D.I., Arsentev P.P., Yakovlev V.V. Teoriya metallurgicheskikh protsessov [Theory of metallurgical processes]. Moscow, Metallurgiya Publ., 1989, 392 p.
[12] Nguyen T.H., Nguyen V.M. Izv. vuzov. Poroshkovaia metallurgiya i funktsionalnye pokrytiya — Powder Metallurgy аnd Functional Coatings, 2020, no. 1, pp. 22–28. DOI: 10.17073/1997-308X-2020-22-28
[13] Konyukhov Yu.V., Nguyen V.M., Ryzhonkov D.I. Fizika i khimiia obrabotki materialov — Physics and Chemistry of Materials Treatment, 2018, no. 1,pp. 66–74.
[14] Kolpakova N.A., Romanenko S.V., Kolpakov V.A. Sbornik zadach po khimicheskoy kinetike [Collection of problems in chemical kinetics]. Tomsk, TPU Publ., 2008, 280 p.
[15] Schmalzried H. Chemical Kinetics of Solids. Weinheim, VCH, 1995, 433 p.