Determination of the coherence of the interface between the solid solution and intermetallic phasesin monocrystal cast alloys based on the Ni3Al intermetallic compound by the X-ray diffraction method
Authors: Nazarkin R.M., Zhigalina O.M.
Published in issue: #10(130)/2022
DOI: 10.18698/2308-6033-2022-10-2221
Category: Metallurgy and Science of Materials | Chapter: Metal Science, Thermal Processing of Metals and Alloys
The paper considers splitting of the solid solution gamma phase diffraction peaks in the nickel heat-resistant alloys, including alloys based on the Ni3Al intermetallic compound with the heterophase structure. It is shown that the effect of splitting the solid solution gamma phase diffraction peaks is missing in the alloys based on the Ni3Al intermetallic compound with heterophase structure, in contrast to the nickel heat-resistant alloys. It was established that splitting of the solid solution gamma phase diffraction peaks in the diffraction pattern was caused by tetragonal distortion of the gamma phase crystal lattice (solid solution) exposed to the interphase stresses. Only under condition of the interphase boundary coherence exposed to the interfacial stresses the tetragonal distortion of the gamma phase crystal lattice (solid solution) appeared. Therefore, a conclusion could be made based on the absence of splitting the gamma phase diffraction peaks that the interphase boundary (interface) coherence was missing in alloys based on the Ni3Al intermetallic compound with the heterophase structure.
References
[1] Tarasenko L.V., Unchikova M.V., Bondarenko Yu.A. Zharoprochnye splavy s orientirovannoy strukturoy [Heat-resistant alloys with oriented structure]. Moscow, BMSTU Publ., 2006, 24 p.
[2] Bazyleva O.A., Arginbaeva E.G., Shestakov A.V. Zharoprochnye intermetallidnye nikelevye splavy dlya dvigateley letatelnykh apparatov [Heat-resistant intermetallic compound nickel alloys for the aircraft engines]. Idei i innovatsii — Ideas and innovations, 2020, vol. 8, no. 3–4, pp. 138–146.
[3] Tretyakov A.F., Tarasenko L.V. Materialovedenie i tekhnologii obrabotki materialov [Materials science and materials processing technologies]. Moscow, BMSTU Publ., 2014, 541 p.
[4] Logunov A.V. Zharoprochnye nikelevye splavy dlya lopatok i diskov gazovykh turbin [Heat-resistant nickel alloys for blades and disks of the gas turbines]. Rybinsk, ID “Gasoturbinnye tekhnologii” Publ., 2017, 854 p.
[5] Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al based intermetallic alloys — current stage and potential perspectives. Materials, 2015, no. 8 (5), pp. 2537–2568.
[6] Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendentsii razvitiya intermetallidnykh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys]. Aviatsionnye materialy tekhnologii — Aviation Materials and Technologies, 2017, no. S, pp. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115
[7] Glotka A.A., Gaiduk S.V. Prognozirovanie svoystv monokristallicheskikh zharoprochnykh splavov [Prediction of the monocrystal heat-resistant nickel alloys properties]. Nauka i progress transporta. Vestnik Dnepropetrovskogo natsionalnogo universiteta zheleznodorozhnogo transporta — Science and progress of transport. Herald of the Dnepropetrovsk National University of Railway Transport, 2019, no. 2 (80), pp. 91–100.
[8] Petrushin N.V., Ospennikova O.G., Svetlov I.L. Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnykh lopatok perspeknivnykh GTD [Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines]. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2017, no. S, pp. 72–103. DOI: 10.18577/2071-9140-2017-0-S-72-103
[9] Shalin R.E., Svetlov I.L., Kachanov E.B. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of the nickel heat-resistant alloys]. Moscow, Mashinostroenie Publ., 1997, 336 p.
[10] Samoylov A.I., Nazarkin R.M., Petrushin N.V., Moiseeva N.S. Misfit kak kharakteristika urovnya mezhfaznykh napryazheniy v monokristallicheskikh zharoprochnykh strukturakh nikelevykh splavov [Misfit as a characteristic of the interphase stresses level in the monocrystal heat-resistant nickel alloys]. Russian Metallurgy (Metally), 2011, no. 3, pp. 71–77.
[11] Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoy mikroskopii rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [The use of methods of analytical microscopy and X-ray diffraction analysis for the study of the structural phase state materials]. Trudy VIAM: nauch.-tekhn. zhurnal — Scientific and Technical Journal “Proceedings of VIAM”, 2013, no. 5, art. 06. Available at: http://www.viam-works.ru/ (accessed August 23, 2022).
[12] Zhigalina O.M., Bazaleeva K.O. Analiz struktury materialov metodami prosvechivayuschey elektronnoy mikroskopii [Analysis of the structure of materials by means of transmission electron microscopy]. Moscow, BMSTU Publ., 2017, 36 p.
[13] Zhigalina O.M. Analiz defektov kristallicheskogo stroyeniya materialov [Analysis of defects in the crystal structure of materials]. Moscow, BMSTU Publ., 2017, 40 p.
[14] Samoylov A.I., Kablov E.N., Petrushin N.V., Nazarkin R.M., Moiseeva N.S. O prirode rasschepleniya -satellitov rentgenovskikh refleksov zharoprochnykh monokristalnykh nikelevykh splavov [On the nature of splitting of the -satellites of the X-ray diffraction reflections of the heat-resistant monocrystal nickel alloys]. Zavodskaya laboratoriya. Diagnostika materialov — Industrial Laboratory. Diagnostics of Materials, 2010, vol. 76, no. 12, pp. 26–29.
[15] Samoylov A.I., Nazarkin R.M., Moiseeva N.S. Nestesnenny misfit v zharoprochnykh monokristallicheskikh nikelevykh splavakh [Unconstrained misfit in heat-resistant monocrystal nickel alloys]. Zavodskaya laboratoriya. Diagnostika materialov — Industrial Laboratory. Diagnostics of Materials, 2011, vol. 77, no. 11, pp. 36–38.
[16] Setyukov O.A. Rentgenostrukturnoe opredelenie strukturnykh parametrov kristallicheskikh reshetok matritsy i -fazy (Al3Li) v splavakh Al–Li [X-ray diffraction determination of the structural parameters of the crystal lattices of the matrix and -phase (Al3Li) in the Al–Li alloys]. Zavodskaya laboratoriya. Diagnostika materialov — Industrial Laboratory. Diagnostics of Materials, 2009, vol. 75, no. 9, pp. 41–45.
[17] Samoylov A.I., Kablov E.N., Petrushin N.V., Roschina I.N. Razmernoe nesootvetstvie kristallicheskikh reshetok - i -faz v nikelevykh reniysoderzhaschikh zharoprochnykh splavakh [Dimensional mismatch of crystal lattices of the - and -phases in the nickel rhenium-containing heat-resistant alloys]. In: Liteynye zharoprochnye splavy. Effekt S.T. Kishkina [Casting heat-resistant alloys. S.T. Kishkin effect], Kablov E.N., red. Moscow, Nauka Publ, 2006, pp. 131–141.
[18] Ignatova I.A., Krivko A.I., Samoylov A.I. Razvitie rentgenovskikh metodov analiza struktury i napryazhennogo sostoyaniya zharoprochnykh splavov [Development of X-ray methods in analyzing the structure and stress state of the heat-resistant alloys]. In: Aviatsionnye materialy na rubezhe XX–XXI vekov [Aviation materials at the turn of the XX–XXI centuries]. Shalin R.E., ed. Moscow, VIAM, 1994, pp. 465–483.
[19] Samoylov A.I., Ignatova I.A., Kozlova V.S., Krivko A.I. Opredelenie mezhfaznykh napryazheniy v psevdomonokristallicheskikh strukturakh s vzaimnoy kristallograficheskoy orientirovkoy faz [Determination of interphase stresses in pseudo-monocrystal structures with mutual crystallographic phase orientation]. Zavodskaya laboratoriya — Industrial Laboratory, 1980, vol. 46, no. 5, pp. 414–417.
[20] Turenko E.Yu., Bazyleva O.A., Shestakov A.V. Sovremennye perspektivnye vysokotemperaturnye splavy serii VIN [Modern advanced high-temperature intermetallic component alloys of the VIN series]. Novosti materialovedeniya. Nauka i tekhnika: electron. nauch.-tekhn. zhurnal — News of materials science. Science and technology: electronic scientific and technical journal, 2014, no. 3, art. 10. Available at: http://materialsnews.ru (accessed August 23, 2022).
[21] Povarova K.B., Bondarenko Yu.A., Drozdov A.A., Bazyleva O.A., Antonova A.V., Morozov A.E., Arginbaeva E.G. Vliyanie napravlennoy kristalizatsii na strukturu i svoystva monokristallov splava na osnove Ni3Al, legirovannogo Cr, Mo, W, Ti, Co, Re i P3M [Influence of directed crystallization on structure and properties of the alloy monocrystals based on the Ni3Al doped with Cr, Mo, W, Ti, Co, Re and REM. Metally — Metals, 2015, no. 1, pp. 50–58.
[22] Povarova K.B., Bazyleva O.A., Drozdov A.A., Kazanskaya N.K., Morozov A.E., Samsonova M.A. Konstruktsionnye zharoprochnye splavy na osnove Ni3Al: poluchenie, struktura i svoystva [Structural heat-resistant alloys based on the Ni3Al: preparation, structure and properties]. Materialovedenie — Materials Science, 2011, no. 4, pp. 39–48.
[23] Buntushkin V.P., Kablov E.N., Bazyleva O.A. Mekhanicheskiye i ekspluatatsionnye svoystva liteynogo zharoprochnogo splava na osnove intermetallida Ni3Al [Mechanical and operational properties of cast heat-resistant alloy based on the Ni3Al intermetallide]. Russian Metallurgy (Metally), 1995, no. 3, pp. 70–73.
[24] Kablov E.N. Rol’ fundamental’nykh issledovaniy pri sozdanii materialov novogo pokoleniya [The fundamental research role in creating materials of new generation]. In: Tez. dokl. XXI Mendeleyevskogo s"yezda po obshchey i prikladnoy khimii [XXI Mendeleevsky Congress for General and Applied Chemistry: Abstracts]. In six vols. Saint Petersburg, 2019, vol. 4, p. 24.
[25] Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. Materialy novogo pokoleniya i tsifrovyye additivnyye tekhnologii proizvodstva resursnykh detaley FGUP «VIAM». Chast’ 4. Razrabotka zharoprochnykh materialov [Materials of new generation and digital additive production technologies of life-time parts of FGUP “VIAM”. Part 4. Development of heat-resistant materials]. Elektrometallurgiya — Electrometallurgy, 2022, no. 5, pp. 8–19. DOI: 10.31044/1684-5781-2022-0-5-8-19
[26] Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A., Dmitriev N.S. Liteynyy intermetallidnyy splav na osnove soyedineniya Ni3Al dlya turbinnykh lopatok gazoturbinnykh dvigateley [Foundry intermetallic alloy based on Ni3Al compound for turbine blades gas turbine engines]. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2022, no. 2, pp. 5–17. DOI: 10.18577/2713-0193-2022-0-2-5-17
[27] Kuzmina N.A., Ostroukhova G.A. Blochnost’ i substruktura v monokristallicheskikh otlivkakh nikelevykh zharoprochnykh splavov [Blockiness and substructure in single-crystal castings of nickel heat-resistant alloys]. Trudy VIAM: nauch.-tekhn. zhurnal — Scientific and Technical Journal “Proceedings of VIAM”, 2022, no. 7, pp. 13–26. DOI: 10.18577/2307-6046-2022-0-7-13-26
[28] Bazyleva O.A., Karashaev M.M., Shestakov A.V., Arginbaeva E.G. Vliyaniye temperatury otzhiga na gomogennost’ intermetallidnogo splava na osnove soyedineniya Ni3Al [Effect of annealing temperature on the homogeneity of intermetallic alloy based on Ni3Al compound]. Trudy VIAM: nauch.-tekhn. zhurnal — Scientific and Technical Journal “Proceedings of VIAM”, 2020, no. 8, pp. 3–10. DOI: 10.18577/2307-6046-2020-0-8-3-10
[29] Kuzmina N.A. Rostovyye strukturnyye defekty v monokristallakh nikelevykh zharoprochnykh splavov [Growth structural defects in single-crystals of nickel heat-resistant alloys]. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2022, no. 3, pp. 15–26. DOI: 10.18577/2713-0193-2022-0-3-15-26