Parameter calculation and design of an autonomous thermal cutting machine based on the combustion chamber of a low-thrust rocket engine
Authors: Andreev E.A., Krylov V.I., Novikov A.V., Shatsky O.E.
Published in issue: #1(73)/2018
DOI: 10.18698/2308-6033-2018-1-1718
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing
As part of rocket engine development conversion we designed a metal cutting installation based on an oxygen/kerosene low-thrust rocket engine (LTRE). We solved the problem of cooling the combustion chamber and noZZle without involving a third component, i.e. water, strictly by means of employing regenerative cooling of the combustion chamber walls by kerosene supplied through pipes into the inter-jacket space, flowing from the injector head to the noZZle and subsequently returning to the combustion chamber head through adjacent pipes. By computing the LTRE thermal state we validated the feasibility of using regenerative kerosene cooling to sustain desired operational thermal conditions in the LTRE combustion chamber. We used computation results and experimental data to develop the design and documentation for a general-purpose thermal cutting machine UTR-2S. Experimental testing results in the case of this thermal cutting machine confirmed the validity of the mathematical model and correctness of our assumptions.
References
[1] Aleksandrenkov V.P., Lapitskiy V.I., Novikov V.I. Rynok vtorichnykh metallov (Scrap metal market), 2002, no. 6, pp. 12-15.
[2] Burkaltsev V.A., Lapitskiy V.I., Novikov A.V., Yagodnikov D.A. Vestnik MGTU im.N.E.Baumana. Ser. Mashinostroenie - Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2004, spets. vypusk. Teoriya i praktika sovremennogo raketnogo dvigatelestroeniya [Special issue on Theory and practice of contemporary rocket engine development], pp. 8-17.
[3] Spalding D.B. Combustion and Mass Transfer. Pergamon Press, 1979, 409 p. [In Russ.: Spalding D.B. Gorenie i massoobmen. Moscow, Mashinostroenie Publ., 1985, 240 p.].
[4] Dobrovolskiy M.V. Zhidkostnye raketnye dvigateli [Liquid rocket engines]. Moscow, BMSTU Publ., 2016.
[5] Belyaev E.N., Chervakov V.V. Matematicheskoe modelirovanie ZhRD [Mathematical simulation of liquid rocket engines]. Moscow, MAI-PRINT Publ., 2009, 280 p.
[6] Trusov B.G. Inzhenernyy zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2012, issue 1. Available at: http://dx.doi.org/10.18698/2308-6033-2012-1-31
[7] Yagodnikov D.A., ed. Aktualnye problemy raketnogo dvigatelestroeniya [Current problems in rocket engine development]. Moscow, BMSTU Publ., 2017, 295 p.
[8] Dorofeev A.A., Yagodnikov D.A., Chertkov K.O. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie - Proceedings of Higher Educational Institutions. МасЫпе Building, 2015, no. 10, pp. 84-94.
[9] Arkharov A.M. Vestnik MGTU im. N.E. Baumana Ser. Mashinostroenie - Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2010, spets. vypusk. Kholodilnaya i kriogennaya tekhnika, sistemy konditsionirovaniya i zhizneobespecheniya [Special issue on Refrigeration, Cryogenic Engineering, Air Conditioning and Life Support Systems], pp. 29-40.
[10] Voronetskiy A.V., Suchkov S.A., Filimonov L.A. Inzhenernyy zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, issue 4 (16). Available at: http://dx.doi.org/10.18698/2308-6033-2013-4-695