Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Multiphase three-dimensional model of the AISI 316L steel laser point heating and melting in the ultrasonic field

Published: 02.07.2024

Authors: Nikiforov S.A., Shvarts I.V., Rublya R.S., Melnikov A.S., Gorunov A.I., Gilmutdinov A.Kh.

Published in issue: #7(151)/2024

DOI: 10.18698/2308-6033-2024-7-2369

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The paper presents a multiphase mathematical model of the AISI 316L stainless steel point heating and melting in the ultrasonic field and its numerical implementation by the finite volume method in the ANSYS Fluent software package. To apply volumetric heat sources and external forces acting on the melt pool, original algorithms based on the user-defined function in the C language are introduced. The paper provides description of the method for using ultrasonic vibrations in the computational domain. It analyzes the ultrasonic vibrations influence on the melt pool flow, width, depth and volume in relation to the numerical experiment with the same parameters, but without the ultrasound. The mathematical model was verified by a full-scale experiment and confirmed qualitative and quantitative characteristics of the ultrasound effect on formation of the melt pool.

EDN THOQVI


References
[1] Bedenko D.V., Kovalev O.B., Smurov I., Zaitsev A.V. Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology. International Journal of Heat and Mass Transfer, 2016, vol. 95, pp. 902–912. Elsevier BV. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.046
[2] Zhao Z., Wang J., Du W., Bai P., Wu X. Numerical simulation and experimental study of the 7075 aluminum alloy during selective laser melting. Optics and Laser Technology, 2023, vol. 167, p. 109814. Elsevier BV. https://doi.org/10.1016/j.optlastec.2023.109814
[3] Li Y., Chen L., Lu L., Zhang X., Zhou W., Ren, X. Numerical and experimental study of RHEAs surface morphology and defect in selective laser melting. International Journal of Refractory Metals and Hard Materials, 2024, vol. 118, p. 106484. Elsevier BV. https://doi.org/10.1016/j.ijrmhm.2023.106484
[4] Zhang D., Prasad A., Bermingham M.J., Todaro C.J., Benoit M.J., Patel M.N., Qiu D., St. John D.H., Qian M., Easton M.A. Grain refinement of alloys in fusion-based additive manufacturing processes. Metallurgical and Materials Transactions A, 2020, vol. 51, issue 9, pp. 4341–4359. Springer Science and Business Media LLC. https://doi.org/10.1007/s11661-020-05880-4
[5] Cui Y., Xu C., Han Q. Effect of ultrasonic vibration on unmixed zone formation. Scripta Materialia, 2006, vol. 55, issue 11, pp. 975–978. Elsevier BV. https://doi.org/10.1016/j.scriptamat.2006.08.035
[6] Yuan T., Kou S., Luo Z. Grain refining by ultrasonic stirring of the weld pool. Acta Materialia, 2016, vol. 106, pp. 144–154. Elsevier BV. https://doi.org/10.1016/j.actamat.2016.01.016
[7] Todaro C.J., Easton M.A., Qiu D., Zhang D., Bermingham M.J., Lui E.W., Brandt M., StJohn D.H., Qian M. Grain structure control during metal 3D printing by high-intensity ultrasound. Nature Communications, 2020, vol. 11, issue 1. Springer Science and Business Media LLC. https://doi.org/10.1038/s41467-019-13874-z
[8] Xiao M., Jiang F., Guo C., Song H., Dong T. Investigation on microstructure and mechanical properties of Fe-based amorphous coatings prepared via laser cladding assisted with ultrasonic vibration. Optics and Laser Technology, 2023, vol. 162, p. 109294. Elsevier BV. https://doi.org/10.1016/j.optlastec.2023.109294
[9] Ivanov I.A., Dub V.S., Karabutov A.A., Cherepetskaya E.B., Bychkov A.S., Kudinov I.A., Gapeev A.A., Krivilyov M.D., Simakov N.N., Gruzd S.A., Lomaev S.L., Dremov V.V., Chirkov P.V., Kichigin R.M., Karavaev A.V., Anufriev M.Yu., Kuper K.E. Effect of laser-induced ultrasound treatment on material structure in laser surface treatment for selective laser melting applications. Scientific Reports, 2021, vol. 11, issue 1. Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-021-02895-8
[10] Ke W., Liu Y., Teshome F. B., Zeng Z. Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment. International Journal of Heat and Mass Transfer, 2024, vol. 220, p. 124976. Elsevier BV. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124976
[11] Nikiforov S. A., Shvarts I. V., Gilmutdinov A. Kh., Gorunov A. I. Chislennoye modelirovanie i verifikatsiya tochechnogo lazernogo nagreva nerzhaveyushchey stali AISI 316L [Numerical simulation and verification of the AISI 316L stainless steel laser spot heating]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2023, issue 8. https://doi.org/10.18698/2308-6033-2023-8-2295
[12] Nikiforov S. A., Shvarts I. V., Gilmutdinov A. Kh., Gorunov A. I. Issledovaniye formy vanny rasplava pri lazernom vozdeystvii na stal AISI 316L s uchetom konvektsii Marangoni [Study of the melt pool shape under laser treatment of AISI 316L steel taking into account Marangoni convection effect]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2023, issue 2. https://doi.org/10.18698/2308-6033-2023-2-2248