Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Using microwave discharge to ignite the air-fuel mixture at high flow velocities

Published: 07.12.2023

Authors: Komratov D.V., Chirkov A.Yu.

Published in issue: #12(144)/2023

DOI: 10.18698/2308-6033-2023-12-2321

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The paper considers the process of a microwave discharge interacting with the supersonic propellant mixture at the 1.6 Mach number. It provides an overview of using the discharges in the propellant ignition under various conditions regarding pressure, flow rate and the discharge energy input. Experimental results are presented of studying ignition of the homogeneous propane-air mixture by temperature and pressure at the outlet of a channel with the 14 mm diameter, and the  oxidizer excess coefficient varying from 1.3 to 0.75, and pressure varying from 0.15 to 0.1 atm. The experimental results were analyzed on the basis of simulation and one-dimensional estimates. Estimates from the experimental data were based on the energy balance and made it possible to show the difference in energy depending on the chemical transformations implementation, which qualitatively indicated the process occurrence. Ignition under such conditions at the static pressure of the order of 0.1 atm and total temperature of 290 K is difficult by other methods, while introduction of the microwave discharge makes it possible to initiate the combustion.


References
[1] Aleksandrov A., Bychkov V., Chernikov V., Dvinin S., Ershov A., Shibkov V.M. Arc Discharge as a means for ignition and combustion of propane-air mixture supersonic flow. In: Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2006. https://doi.org/10.2514/6.2006-1462
[2] Alexandrov A.F., Timofeev A.F., Esakov I.I., Vinogradov V.A. The effect of plasma formations on ignition and combustion. AIAA Paper, 2004, pp. 11089–11100.
[3] Esakov I., Grachev L., Khodataev K., Vingradov V.A., Van Wie D.M. Propane-air mixture combustion efficiency in deeply undercritical MW discharge area in cold high-speed airflow. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2006. https://doi.org/10.2514/6.2006-1212
[4] Esakov I.I., Grachev L.P., Khodataev K.V., Vinogradov V.A., Van Wie D.M. Propane–Air Mixture Combustion Assisted by MW Discharge in a Speedy Airflow. IEEE Transactions on Plasma Science, 2006, vol. 34, no. 6, pp. 2497–2506. https://doi.org/10.1109/TPS.2006.886090
[5] Vinogradov V., Shikhman Y., Kossiy I., Gritsinin S., Davidov A. Effect of energy level supplied to magnetron on performance of surface discharge MW generator. In: 47th Aerospace Sciences Conference, Orlando, USA, 2009. https://doi.org/10.2514/6.2009-494
[6] Davydov A.M., Gritsinin S.I., Kossyi I.A., Shikhman Y.M., Vinogradov V.A. Application of MW plasma generator for ignition of kerosene/air mixture. IEEE Transactions on Plasma Science, 2008, vol. 36, no. 6, pp. 2909–2917. https://doi.org/10.1109/TPS.2008.2006977
[7] Alexandrov K., Alfeev E., Grachev L., Esakov I., Khomenko I., Khodataev K., Vinogradov V. Experimental investigation of surface discharge in a focused beam of microwave radiation at wavelengths of 2.5 cm and 8.9 cm. In: 47th Aerospace Sciences Conference. Orlando, USA, 2009. https://doi.org/10.2514/6.2009-845
[8] Esakov I., Grachev L., Khodataev K., Vinogradov V., Van Wie D. A system of deeply subcritical microwave discharges in a supersonic air stream. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, USA, 2010. https://doi.org/10.2514/6.2010-1197
[9] Bulat P.V., Esakov I.I., Volobuev I.A., Grachev L.P. O vozmozhnosti uskoreniya goreniya v kamerakh sgoraniya perspektivnykh reaktivnykh dvigateley pri pomoscshi gluboko podkriticheskogo SVCh-razryada [On the possibility of burning acceleration in the combustion chambers of advanced jet engines by deeply subcritical microwave discharge]. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki — Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 2, pp. 382–385.
[10] Alferov V.I., Bushmin A.S. Elektricheskiy razryad v sverkhzvukovom potoke vozdukha [Electrical discharge in a supersonic airflow]. ZhETF — Journal of Experimental and Theoretical Physics, 1963, vol. 44, no. 6, pp. 1771–1775.
[11] Alferov V.I., Bushmin A.S., Kalachev B.V. Eksperimentalnye issledovaniya svoystv elektricheskogo razryada v potoke vozdukha [Experimental investigation of the properties of an electric discharge in an air stream]. ZhETF — Journal of Experimental and Theoretical Physics, 1966, vol. 51, no. 5, pp. 1281–1287.
[12] Aleksandrov A.F., Ershov A.P., Logunov A.A., Surkont O.S., Chernikov V.A., Shibkov V.M. Vosplamenenie sverkhzvukovogo potoka propan-vozdushnoy smesi elektricheskim razryadom [Ignition of a supersonic flow of propane-air mixture by an electric discharge]. Vestnik moskovskogo universiteta. Ser. 3: Fizika. Astronomiya — Moscow University Physics Bulletin, 2008, no. 1, pp. 78–80.
[13] Efimov B.G., Ivanov V.V., Skvortsov V.V. Initsiirovanie i stabilizatsiya goreniya pri nizkikh davleniya i temperature s pomoshchyu neravnovesnogo elektricheskogo razryada [Initiation and stabilization of combustion at low pressure and temperature by means of a nonequilibrium electric discharge]. Izv. RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2008, no. 5, pp. 153–160. https://doi.org/10.1134/S0015462808050153
[14] Efimov B.G., Ivanov V.V., Skvortsov V.V., Starodubtsev M.A. Stabilizatsiya goreniya propana v sverkhzvukovom potoke vozdukha s pomoshchyu neravnovesnogo prodolnogo zaryada i soosnoy s nim lokalnoy zony ponizhennogo davleniya [Stabilization of Propane Combustion in a Supersonic Air Flow Using a Nonequilibrium Longitudinal Discharge and a Coaxial Local Low-Pressure Zone]. Izv. RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2010, no. 4, pp. 141–151. https://doi.org/10.1134/S0015462810040137
[15] Efimov B.G., Ivanov V.V., Inshakov S.I., Skvortsov V.V., Starodubtsev M.A. Issledovanie formirovaniya prostranstvennogo polozheniya prodolnogo razryada v sverkhzvukovom potoke s pomoshchyu podbora konfiguratsii anoda v usloviyakh inzhektsii propana i kerosina v zonu razryada [Investigation of formation of a spatial position of longitudinal discharge in a supersonic flow by fitting the configuration of an anode under conditions of injection of propane and kerosene into the discharge zone]. Teplofizika vysokikh temperatur — High Temperature, 2011, vol. 49, no. 4, pp. 497–504. https://doi.org/10.1134/S0018151X11040067
[16] Skvortsov V.V. Eksperimentalnye issledovaniya ryada skhem neravnovesnykh elektrodnykh razryadov dlya vosplameneniya i stabilizatsii goreniya v sverkhzvukovykh potokakh [Experimental investigations of nonequilibrium electrical discharges application questions in tasks of ignition and combustion stabilization of hydrocarbon fuels in supersonic flows]. Uchenye zapiski TsAGI — TsAGI Science Journal, 2011, vol. XLII, no. 3, pp. 3–24.
[17] Leonov S.B., Savelkin K.V., Firsov A.A., Yarantsev D.A. Zazhiganie topliva i stabilizatsiya fronta plameni v sverkhzvukovom potoke pri pomoshchi elektricheskogo razryada [Fuel ignition and flame front stabilization in supersonic flow using electric discharge]. Teplofizika vysokikh temperatur — High Temperature, 2010, vol. 48, no. 6, pp. 941–947. https://doi.org/10.1134/S0018151X10060179
[18] Bityurin V.A., Velikodnyi V.Yu., Tolkunov B.N., Bykov A.A., Direnkov A.V., Popov V.V. Eksperimentalnoe issledovanie protsessa podzhiga i stabilizatsii goreniya zhidkikh uglevodorodnykh topliv elektricheskim dugovym razryadom [Experimental research of ignition and stabilized burning of the hydrocarbon fuels with the electric arc]. Prikladnaya fizika — Applied Physics, 2011, no. 4, pp. 36–41.
[19] Zudov V.N., Grachev G.N., Krainev V.L., Smirnov A.L., Tretyakov P.K., Tupikin A.V. Initsiirovanie goreniya opticheskim razryadom v sverkhzvukovoy metanovozdushnoy strue [Combustion initiation by an optical discharge in a supersonic methane–air jet]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2013, vol. 49, no. 2, pp. 144–147. https://doi.org/10.1134/S0010508213020184
[20] Gibbons N., Gehre R., Brieschenk S., Wheatley V. Simulation of laser-induced-plasma ignition in a hypersonic crossflow. AIAA Journal, 2018, vol. 56, no. 8, pp. 3047–3059. https://doi.org/10.2514/1.J055821
[21] Shibkov V.M., Dvinin S.A., Ershov A.P., Konstantinovskii R.S., Surkont O.S., Chernikov V.A., Shibkova L.V. Poverkhnostnyi sverkhvysokochastotnyi razryad v vozdukhe [Surface microwave discharges in air]. Fizika plazmy — Plasma Physics Reports, 2007, vol. 33, no. 1, pp. 77–85. https://doi.org/10.1134/S1063780X07010096
[22] Aleksandrov A.F., Shibkov V.M., Shibkova L.V. Poverkhnostnyi SVCh-razryad v vysokoskorostnykh vozdushno-uglevodorodnykh potokakh [Surface microwave discharge in high-speed air-hydrocarbon flows]. Vestnik moskovskogo universiteta. Ser. 3: Fizika. Astronomiya — Moscow University Physics Bulletin, 2008, vol. 3, no. 5, pp. 68–69.
[23] Aleksandrov A.F., Shibkov V.M., Shibkova L.V. Gazodinamicheskie vozmushcheniya v usloviyakh poverkhnostnogo sverkhvysokochastotnogo razryada v vozdukhe [Gasdynamic perturbations under conditions of surface microwave discharge in air]. Teplofizika vysokikh temperatur — High Temperature, 2010, vol. 48, no. 5, pp. 643–652. https://doi.org/10.1134/S0018151X10050019
[24] Shibkov V.M., Shibkova L.V., Gromov V.G., Karachev A.A., Konstantinovskii R.S. Vliyanie poverkhnostnogo SVCH-razryada na vosplamenenie vysokoskorostnykh propan-vozdushnykh potokov [Influence of surface microwave discharge on ignition of high-speed propane-air flows]. Teplofizika vysokikh temperatur — High Temperature, 2011, vol. 49, no. 2, pp. 163–176. https://doi.org/10.1134/S0018151X11020143
[25] Baurov A.Y., Shibkova L.V., Shibkov V.M., Kopyl P.V., Surkont O.S. Vneshnee gorenie vysokoskorostnykh mnogokomponentnykh vozdushno-uglevodorodnykh potokov v usloviyakh nizkotemperaturnoy plazmy [External combustion of high-speed multicomponent hydrocarbon-air flow under conditions of low-temperature plasma]. Vestnik Moskovskogo universiteta. Fizika — Moscow University Physics Bulletin, 2013, vol. 68, no. 4, pp. 28–33. https://doi.org/10.3103/S0027134913040012
[26] Bulat P.V., Volkov K.N., Grachev L.P., Esakov I.I., Ravaev A.A. Zazhiganie goryuchey smesi gazov mikrovolnovym podkriticheskim strimernym razryadom v vysokoskorostnom potoke [Ignition of a Combustible Gas Mixture by a Microwave Subcritical Streamer Discharge in High-Speed Flow]. Fiziko-khimicheskaya kinetika v gazovoy dinamike — Physical-Chemical Kinetics in Gas Dynamics, 2022, vol. 23, no. 5, pp. 93–110. https://doi.org/10.33257/PhChGD.23.5.1014
[27] Grachev L.P., Esakov I.I., Khodataev K.V. Strimernyi SVCh razryad v sverkhzvukovom potoke vozdukha [Microwave streamer discharge in a supersonic air flow]. ZhTF — Technical Physics, 1999, vol. 44, no. 11, pp. 14–18. https://doi.org/10.1134/1.1259508
[28] Bychkov V.L., Grachev L.P., Esakov I.I., Ravaev A.A., Khodataev K.V. Prodolnyi elektricheskiy razryad postoyannogo toka v sverkhzvukovom potoke vozfukha [Longitudinal DC electric discharge in a supersonic air flow]. ZhTF — Technical Physics, 2004, vol. 74, no. 7, pp. 27–32. https://doi.org/10.1134/1.1778855
[29] Aleksandrov K.V., Grachev L.P., Esakov I.I. SVCh-proboy vozdukha, initsiirovannyi elektromagnitnym vibratorom maloy dliny [Microwave breakdown of air initiated by a short electromagnetic vibrator]. ZhTF — Technical Physics, 2007, vol. 77, no. 12, pp. 26–30. https://doi.org/10.1134/S1063784207120055
[30] Aleksandrov K.V., Grachev L.P., Esakov I.I., Fedorov V.V., Khodataev K.V. Oblasti realizatsii razlichnykh tipov SVCh-razryada v kvaziopticheskikh elektromagnitnykh puchkakh [Domains of existence of various types of microwave discharge in quasi-optical electromagnetic beams]. ZhTF — Technical Physics, 2006, vol. 76, no. 11, pp. 52–60. https://doi.org/10.1134/S1063784206110090
[31] Aleksandrov K.V., Grachev L.P., Esakov I.I., Ravaev A.A., Severinov L.G. Kharakteristiki raspolozhennogo nad ekranom elektromagnitnogo vibratora —initsiatora elektricheskogo proboya gaza v kvaziopticheskom SVCh-puchke [Characteristics of the above-screen electromagnetic dipole that initiates the electric breakdown of gas in the quasi-optical microwave beam]. Radiotekhnika i elektronika — Journal of Communications Technology and Electronics, 2011, vol. 56, no. 11, pp. 1387–1393. https://doi.org/10.1134/S1064226911110015
[32] Grachev L.P., Esakov I.I., Ravaev A.A., Yakovlev A.Y. Initsiirovannyi elektromagnitnym vibratorom gazovyi elektricheskiy razryad v kvaziopticheskom sverkhvysokochastotnom puchke s gluboko podkriticheskim urovnem polya [Gas electric discharge induced by electromagnetic vibrator in quasi-optical microwave beam with significantly subcritical field level]. Radiotekhnika i elektronika — Journal of Communications Technology and Electronics, 2017, vol. 62, no. 4, pp. 386–391. https://doi.org/10.1134/S1064226917040088
[33] Busleev N.I., Bychkov V.L., Grachev L.P., Esakov I.I., Ravaev A.A. Otlipanie elektronov ot molekul kisloroda vozdukha v intensivnom elektricheskom pole [Detachment of electrons from atmospheric oxygen molecules in a high electric field]. ZhTF — Technical Physics, 2017, vol. 87, no. 9, pp. 1332–1336. https://doi.org/10.1134/S1063784217090031
[34] Starikovskaia S.M., Kukaev E.N., Kuksin A.Y., Nudnova M.M., Starikovskii A.Y. Analysis of the spatial uniformity of the combustion of a gaseous mixture initiated by a nanosecond discharge. Combustion and Flame, 2004, no. 139, pp. 177–187.
[35] Anikin N.B., Starikovskaia S.M., Starikovskii A.Y. Oxidation of saturated hydrocarbons under the effect of nanosecond pulsed space discharge. Journal of Physics D: Applied Physics, 2006, vol. 39, no. 15, pp. 56–67.
[36] Starikovskaia S.M. Plasma assisted ignition and combustion. Journal of Physics D: Applied Physics, 2006, vol. 39, no. 16, pp. 58–67.
[37] Starikovskii A.Y. Plasma supported combustion. Proceedings of the Combustion Institute, 2005, no. 30, pp. 2405–2417.
[38] Starikovskiy A.V., Korobkov S.V., Gushchin M.E., Evtushenko A.A., Zudin I.Y. Parametry plazmy krupnomashtabnogo vysokovoltnogo razryada v vozdukhe pri ponizhennom davlenii [Parameters of the plasma of a large-scale high-voltage discharge in air at reduced pressures]. Fizika plazmy — Plasma Physics Reports, 2019, vol. 45, no. 6, pp. 487–497. https://doi.org/10.1134/S1063780X19060102
[39] Yiguang J., Wenting S. Plasma Assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science, 2015, no. 48, pp. 21–83.
[40] Rukovodstvo polzovatelya CHEMKIN [CHEMKIN Tutorials Manual]. Available at: https://personal.ems.psu.edu/~radovic/ChemKin_Tutorial_2-3-7.pdf