Estimating the amplitude of the pressure on the obstacle of products of an under-compressed outgoing detonation wave of a structured charge
Authors: Andreev S.G., Boiko M.M.
Published in issue: #11(107)/2020
DOI: 10.18698/2308-6033-2020-11-2028
Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma
The study relies on the concepts of various mechanisms of explosives decomposition at supersonic propagation of the under-compressed detonation reaction zones, and examines the structured charges explosion effect on compressible obstacles. In such charges, artificially or naturally, there can appear rod-like formations highly capable of detonation, penetrating the charge and ensuring the propagation of the complete heat release zone at a speed greater than the normal, and the ideal detonation speed of a monodisperse charge is of the same density. We introduce a simple algebraic model of the explosive process of structured charges, the process proceeding in the form of under-compressed detonation. We obtained algebraic expressions that make it possible to compare the peak pressures at the obstacles depending on the direction of detonation propagation relative to the obstacle and on the mode of detonation, i.e. whether it is normal or “under-compressed”.
References
[1] Ermolaev B.S., Sulimov A.A. Advances and problems in DDT in solids. 5th Symposium (International) on High Dynamic Pressures Proceedings. Saint-Malo, France, 2003, vol. 1, pp. 15–16.
[2] Ermolaev B.S., Sulimov A.A. Konvektivnoe gorenie i nizkoskorostnaya detonatsiya poristykh energeticheskikh materialov [Convective combustion and low velocity detonation of porous energetic materials]. Mikhaylov Yu.M., ed. Moscow, Torus Press Publ., 2017, 400 p.
[3] Litvinov B.V., Lebedev M.A. Khimicheskaya fizika Russian Journal of Physical Chemistry B: Focus on Physics, 1993, vol. 12, no. 6, pp. 726–734.
[4] Andreev S.G., Boyko M.M., Solovev V.S., Lazarev V.V. Parametry polya teche-niya v udarnykh trubakh sokhrannogo dinamicheskogo szhatiya strukturno-neodnorodnykh kondensirovannykh veshchestv [Parameters of the flow field in shock tubes of stable dynamic compression of structurally inhomogeneous condensed substances]. Vysokoenergeticheskoe vozdeistvie na materialy: Sbornik trudov Mezhdunarodnoy konferentsii [High-energy impact on materials: Proceedings of the International Conference]. Novosibirsk, 1986, pp. 131–135.
[5] Andreev S.G., Boyko M.M., Kobylkin I.F., Solovev V.S. Fizika goreniya i vzryva Combustion, Explosion, and Shock Waves, 1976, vol. 15, no. 6, pp. 143–148.
[6] Imkhovik N.A. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy (Ammunition and high energy condensed systems), 2008, no. 2, pp. 40–49.
[7] Solovev V.S., Andreev S.G., Levantovskiy A.V. Opticheskie i rentgenografi-cheskie issledovaniya nizkoplotnykh VV na osnove geksogena [Optical and X-ray studies of low-density explosives based on RDX]. Gorenie i vzryv: materialy Tretego Vsesoyuznogo simpoziuma po goreniyu i vzryvu [Combustion and Explosion: Proceedings of the Third All-Union Symposium on Combustion and Explosion.]. Moscow, Nauka Publ., 1972, pp. 451–454.
[8] Orlenko L.P., ed. Fizika vzryva [Explosion physics]. In 2 vols., vol. 1. 3rd ed. Moscow, FIZMATLIT Publ., 2002, 832 p. ISBN 5-9221-0219-2
[9] Zeldovich Ya.B., Kompaneets A.S. Teoriya detonatsii [Detonation theory]. Moscow, Gos. izd. nauch.-tekh. lit. Publ., 1955, 286 p.