Heat transfer in HF induction plasmatron VGU-4 with the use of slit nozzles
Authors: Gordeev A.N., Chaplyguin A.V.
Published in issue: #2(98)/2020
DOI: 10.18698/2308-6033-2020-2-1953
Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma
Heat transfer of subsonic jets of dissociated gas flowing from slit nozzles with outlet sections of 40 × 8, 80 × 15 and 120 × 9 mm with the plate surface at an angle of attack was experimentally studied in the HF-plasmatron VGU-4. Heat flux distributions along the axis of symmetry of the copper plates were obtained depending on the power of the anode supply of the HF-generator and the slit nozzle geometry. Heat fluxes on the low-catalytic surface of the heat-shielding tile of the «Buran» orbiter were determined depending on the pressure in the plasmatron chamber when using a slit nozzle with an outlet section of 120 × 9 mm.
References
[1] Gordeev A.N., Kolesnikov A.F. Fiziko-khimicheskaya kinetika v gazovoy dinamike — Physical-Chemical Kinetics in Gas Dynamics, 2008, vol. 7. Available at: http://chemphys.edu.ru/issues/2008-7/articles/453/ (accessed November 18, 2019).
[2] Bityurin V.A., Bocharov A.N., Baranov D.S., Krasilnikov A.V., Knotko V.B., Plastinin Y.A. Experimental study of flow parameters and MHD generator models at high frequency plasmatron. In: The 15th International Conference on MHD Energy Conversion and the 6th International Workshop on MagnetoPlasma Aerodynamics, IVTAN. Moscow, 2005, pp. 444.
[3] Balter-Peterson A., Nichols F., Mifsud B., Love W. Arc jet testing in NASA Ames Research Center thermophysics facilities. In: 4th Symposium on Multidisciplinary Analysis and Optimization. 1992, pp. 5041.
[4] Terrazas-Salinas I., Cornelison C. Test Planning Guide for NASA Ames Research Center Arc Jet Complex and Range Complex. Space Technology Division, NASA Ames Research Center, Moffett Field, CA, 2009, vol. 94035, pp. 20–21.
[5] Gordeev A.N. Chaplygin A.V. Fiziko-khimicheskaya kinetika v gazovoy dinamike — Physical-Chemical Kinetics in Gas Dynamics, 2019, vol. 20, no. 1. http://doi.org/10.33257/PhChGD.20.1.780
[6] Gordeev A.N., Kolesnikov A.F. Vysokochastotnye induktsionnye plazmotrony serii VGU [High frequency induction plasma torches of VGU series]. In: Sb. Aktualnye problemy mekhaniki: Fiziko-himicheskaya mekhanika zhidkostey i gazov [Current problems of mechanics: physico-chemical mechanics of liquids and gases]. Moscow, Nauka Publ., 2010, pp. 151–177.
[7] Viladegut A., Chazot O. OFF-Stagnation point testing in plasma facility. In: Progress in Flight Physics, 2015, vol. 7, pp. 113–122. Available at: https://doi.org/10.1051/eucass/201507113
[8] ASTM E422-05(2016), Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter. ASTM International, West Conshohocken, PA, 2016. Available at: https://www.astm.org/Standards/E422.htm (accessed November 18, 2019).
[9] Gülham A., Esser B. A study on heat flux measurements in high enthalpy flows. In: 35th AIAA Thermophysics Conference, 2001, pp. 3011.
[10] Gokcen T., Hui F., Taunk J., Noyes E., Schickele D. Calibration of the Truncated Panel Test Arc-Jet Facility. In: 41st AIAA Thermophysics Conference, 2009, pp. 4090. https://doi.org/10.2514/6.2009-4090
[11] ASTM E457-08(2015), Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter. ASTM International, West Conshohocken, PA, 2015. Available at: https://www.astm.org/Standards/E457.htm (accessed November 18, 2019).
[12] Anderson L.A. Effect of surface catalytic activity on stagnation heat-transfer rates. AIAA Journal, 1973, vol. 11, no. 5, pp. 649–656. https://doi.org/10.2514/3.6806
[13] Kolesnikov A.F. The Aerothermodynamic Simulation in Sub- and Supersonic High-Enthalpy Jets: Experiment and Theory. In: Proc. 2nd European Symposium on Aerothermodynamics for Space Vehicles. ESA Publication Division, European Space Agency, Noordwijk, The Netherlands. ESA SP-367, 1995, pp. 583–590.
[14] Magunov A.N. Teploobmen neravnovesnoy plazmy s poverkhnost’yu [Heat transfer from a non-equilibrium plasma to a surface]. Moscow, Fizmatlit, 2005, pp. 53–55.
[15] Coleman H.W., Steel W.G. Experimentation and Uncertainty analysis for engineers. New York, Wiley Interscience, p. 42.
[16] Esposito A., De Rosa F., Caso V., Parente F. Design of slug calorimeters for re-entry tests. NASA Tech. Pap., 2010, vol. 2, no. 2, p. 4.
[17] Nawaz A., Santos J. Assessing Calorimeter Evaluation Methods in Convective Heat Flux Environments. In: 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Chicago, Illinois, 28 June 2010 – 01 July 2010. Chicago, 2010, p. 4905.
[18] Smith S.F. Investigation of subsonic and supersonic flow characteristics of an inductively coupled plasma facility. Graduate College dissertations and theses. University of Vermont, 2013, pp. 31–34.
[19] Dozhdikov V.S., Petrov V.A. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2000, vol. 73, no. 1, pp. 26–30.
[20] Gofin M.Ya. Teplozashchitnaya konstruktsiya mnogorazovogo orbital’nogo korablya [Heat-shielding design of a reusable orbital ship]. In: Aviatsionno-kosmicheskiye sistemy [Aerospace systems]. Moscow, MAI, 1997, pp. 136–144.
[21] Leko V.K., Mazurin O.V. Svoystva kvartsevogo stekla [Properties of quartz glass]. Leningrad, Nauka Publ., Leningrad branch, 1985, pp. 94–97.
[22] Neyland V.Ya., Tumin A.M. Aerotermodinamika vozdushno-kosmicheskikh samoletov [Aerothermodynamics of aerospace aircraft]. Zhukovskiy, Faculty of Aeromechanics and Aircraft Engineering, MIPT Publ., 1991, pp. 136–154.
[23] Dresvin S.V. Fizika i tekhnika nizkotemperaturnoy plazmy [Physics and technology of low-temperature plasma]. Moscow, Atomizdat Publ., 1972, pp. 127–136.
[24] Voropaev A.A., Dresvin S.V., Klubnikin V.S. Teplofizika vysokikh temperatur — High Temperature, 1969, vol. 7, no. 4, pp. 633–640.
[25] Abramovich G.N., ed. Turbulentnoye smesheniye gazovykh struy [Turbulent mixing of gas jets]. Moscow, Nauka Publ., 1974, p. 10.
[26] Bottin B., Chazot O., Carbonaro M., Van Der Haegen V., Paris S. The VKI Plasmatron Characteristics and Performance. Measurement Techniques for High Temperature and Plasma Flowsю J.M. Charbonnier and G.S.R. Sarma, ed. NATO Research and Technology Organization, Neuilly-sur-Seine, France, 1999.
[27] Chazot O., Pereira Gomes J., Carbonaro M. Characterization of a ‘mini-plasmatron’ facility by pitot probe measurements. In: 29th AIAA, Plasmadynamics and Lasers Conference. 1998, art. 2478. https://doi.org/10.2514/6.1998-2478
[28] Carleton F.E., Kadlec R.H. Impact Tube Gas Velocity Measurement at High Temperatures. Al. Che. Journal, 1972, vol. 18, no. 5, pp. 1065–1067.
[29] Barker M. On the Use of very small Pitot Tubes for Measuring Wind velocity. In: Proceedings of the Royal Society, Series A, 1922, no. 101, p. 435.
[30] Kolesnikov A.F., Gordeev A.N., Vasilievsky S.A., Tepteeva E.S. Teplofizika vysokikh temperatur — High Temperature, 2019, vol. 57, no. 4, pp. 509–517.