Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Method of computing hydraulic gradient for the case of a two-phase mixture flowing in sloping pipes

Published: 18.11.2019

Authors: Kondratiev A.S., Nha T.L.

Published in issue: #11(95)/2019

DOI: 10.18698/2308-6033-2019-11-1930

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

 

The paper investigates two-phase mixture flows in sloping pipes employing two computational methods in the transitional region of pipe slope angle. We used methods of computing two-mixture flows in horizontal and vertical pipes as the basis for our equations. When flowing downwards through a sloping pipe, the solid phase volume ratio distribution changes most significantly: an axisymmetric flow through a vertical pipe transforms into a flow featuring a markedly non-uniform distribution of the solid phase along the vertical plane in the sloping pipe. When flowing upwards, the solid phase volume ratio profile is inversely transformed. Comparison of the experimental and computational data showed that the datasets are in a sufficiently good agreement. The computational method developed is semi-empirical and may be recommended for calculating hydraulic gradient in sloping pipes.


References
[1] Kondratev A.S., Nha T.L. Fundamentalnye issledovaniya — Fundamental research, 2018, no. 4, pp. 13–20.
[2] Norman J.T., Navak H.V., Bonnecaze R.T. J. Fluid Mechanics, 2005, vol. 523, pp. 1–35.
[3] Kondratev A.S., Shvydko P.P. Sovremennye naukoemkie tekhnologii — Modern high technologies, 2017, no. 9, pp. 28–33.
[4] Kondratev A.S., Shvydko P.P. Vestnik MGPU. Ser. Estestvennye nauki — Moscow City University. Scientific Journal. Ser. Natural Sciences, 2017, no. 2 (26), pp. 59–69.
[5] Semenenko E.V. Metodika rascheta parametrov vnutrifabrichnykh sistem gidrotransporta [Method of calculating intrafactory hydrotransport system parameters]. Naukovi pratsi DonNTU. Ser. Girnicho-elektromekhanichna [Proc. of DonNTU. Series Mining and Electromechanical], 2007, no. 15 (131), pp. 174–179.
[6] Kril S.I., Semenenko E.V. Prikladnaya gidromekhanika — Applied Hydromechanics, 2010, vol. 12, no. 1, pp. 48–54.
[7] Karasik V.M., Asaulenko I.A., Vitoshkin Yu.K. Intensifikatsiya gidro-transporta produktov i otkhodov obogashcheniya gorno-obogatitelnykh kombinatov [Intensifying hydrotransportation of products and waste in mineral processing plants]. Kiev, Naukova Dumka Publ., 1976, 156 p.
[8] Masanobu S., Takano S., Fujiwara T., Kanada S., Ono M., Sasagawa H. J. Offshore Mechanics Arctic Engineer, 2017, no. 139 (5), pp. 345–354.
[9] Eltoukhy M.F.R. Inter. J. Civil Engin. Techn. (IJCET), 2013, vol. 4, no. 3, pp. 45–56.
[10] Coiado E.M., Diniz M.G. J. Braz. Soc. Mech. Sci. Rio de Janeiro, 2001, vol. 23, no. 3, pp. 346–362.
[11] Polyanin A.D., Vyazmina U.A., Dilman V.V. Teoreticheskie osnovy khimicheskoy tekhnologii — Theoretical Foundations of Chemical Engineering, 2008, vol. 42, no. 4, pp. 368–380.