Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Vibrations in electron plasma featuring an arbitrary degree of degeneracy

Published: 31.08.2018

Authors: Gordeeva N.M.

Published in issue: #8(80)/2018

DOI: 10.18698/2308-6033-2018-8-1796

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The paper analyses a solution to the boundary value problem of plasma responding to an external electric field. We consider vibrations of degenerate electron plasma over a layer of finite thickness. We used the Boltzmann—Vlasov kinetic equation with the Bhatnagar—Gross—Krook collision operator and Maxwell's electric field equation to develop the mathematical simulation. We describe the case of specular electron reflection from the plasma surface. The general solution to the boundary value problem, that is, the electric field intensity, is a linear combination of discrete solutions with constant coefficients and an integral over a continuous spectrum. The discrete solutions prove to be the Drude and Debye solutions known previously, while the continuous spectrum matches the van Kampen waves. We show that the existence of the Debye mode depends on the external electric field frequency and the following plasma parameters: chemical potential and collision frequency. Existence of a complex root of the dispersion function determines the domain of the solution corresponding to the Debye mode. This root may be found by employing the argument principle


References
[1] Landau L.D. O kolebaniyakh elektronnoy plazmy [On the vibrations of electron plasma]. Sobranie trudov [Collected works]. Moscow, Nauka Publ., 1969, vol. 2, pp. 7–25.
[2] Vlasov A.A. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki — Journal of Experimental and Theoretical Physics, 1938, vol. 8, no. 3, pp. 291–318.
[3] Landau L.D., Lifshits E.M. Statisticheskaya fizika [Statistical Physics]. Moscow, Nauka Publ., 1964, 567 p.
[4] Keller O. Physics Reports, 1996, vol. 268, pp. 85–262.
[5] Girard C., Joachim C., Gauthier S. Reports on Progress on Physics, 2000, vol. 63, pp. 893–938.
[6] Latyshev A.V., Yushkanov A.A. Optika i spektroskopiya — Optics and Spectroscopy, 2011, vol. 110, no. 5, pp. 796–803.
[7] Yushkanov A.A., Zverev N.V. Physics Letters A, 2017, vol. 381, pp. 679–684.
[8] Pitarke J.M., Silkin V.M., Chulkov E.V., Echenique P.M. Reports in Progress in Physics, 2007, vol. 70, pp. 1–87.
[9] Latyshev A.V., Yushkanov A.A. Optika i spektroskopiya — Optics and Spectroscopy, 2013, vol. 114, no. 2, pp. 124–128.
[10] Latyshev A.V., Lesskis A.G., Yushkanov A.A. Teoreticheskaya i matematicheskaya fizika — Theoretical and Mathematical Physics, 1992, vol. 92, no. 1 (July), pp. 127–138.
[11] Latyshev A.V., Yushkanov A.A. Izvestiya RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2006, no. 1, pp. 165–177.
[12] Latyshev A.V., Yushkanov A.A. Teoreticheskaya i matematicheskaya fizika — Theoretical and Mathematical Physics, 2006, vol. 144, no. 1, pp. 488–503.
[13] Berezkina S.V., Kuznetsova I.A., Yushkanov A.A. Zhurnal tekhnicheskoy fiziki — Technical Physics, 2006, vol. 76, no. 5, pp. 1–7.
[14] Latyshev A.V., Gordeeva N.M. Teoreticheskaya i matematicheskaya fizika — Theoretical and Mathematical Physics, 2017, vol. 192, no. 3, pp. 506–522.