Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Sonic boom investigation: Computation and experiment

Published: 23.05.2017

Authors: Kiselev A.F., Kovalenko V.V., Pritulo T.M.

Published in issue: #8(68)/2017

DOI: 10.18698/2308-6033-2017-8-1643

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The article deals with the issues related to designing supersonic aircraft. The biggest hurdle in creating second-generation supersonic civil aircraft is the requirement for the sonic boom amplitude to remain acceptable. The article presents results of investigating the sonic boom phenomenon using a combined computational and experimental technique. The technique is based on measuring perturbed pressure in the near field of a model mounted in the working part of a wind tunnel and subsequently remapping the measurement data over large distances using the quasilinear theory. We provide results of investigating pressure distributions in the near field of aircraft models in the TsAGI T-113 wind tunnel. We compare experimental and numerical data and outline suggestions for improving the technique.

[1] Chirkashenko V.F., Yudintsev Yu.N. Razvitie metodiki izmereniy parametrov zvukovogo udara v sverkhzvukovykh aerodinamicheskikh trubakh [Developing a technique for measuring sonic boom parameters in supersonic wind tunnels]. Preprint no. 6-83, Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences. Novosibirsk, 1983, рр. 1-19.
[2] Chirkashenko V.F., Yudintsev Yu.N. Sistema izmereniy parametrov zvukovogo udara v aerodinamicheskikh trubakh s ispolzovaniem EVM [A system for measuring sonic boom parameters in wind tunnels using a computer]. Preprint no. 21-83, Khristianovich Institute of Theoretical And Applied Mechanics, Siberian Branch of Russian Academy of Sciences. Novosibirsk, 1983, рр. 1-27.
[3] Rudakov A.I., Yudintsev Yu.N. Uchenye zapiski TsAGI - TsAGI Science Journal, 1979, vol. Х, no. 3, pp. 27-36.
[4] Chernyshev S.L., Ivanov A.I., Kiselev A.F., Kovalenko V.V., Mosharov V.E., Chirkashenko V.F., Volkov V.F., Fomin V.M., Kharitonov A.M. Sovershen-stvovanie metodov fizicheskogo modelirovaniya yavleniya zvukovogo udara ot sverkhzvukovogo samoleta [Refining physical simulation techniques for the phenomenon of sonic boom generated by supersonic aircraft]. In: Sbornik "Rezultaty fundamentalnykh issledovaniy v prikladnykh zadachakh aviastroeniya" [Proc. of the Results of Theoretical Investigations in Applied Problems of Aircraft Industry]. Moscow, Nauka Publ., 2016, pp. 41-54.
[5] MacCormack R.W. The effect of viscosity in hypervelocity impact cratering. The 4th Aerodynamic Testing Conference, Cincinnati, American Institute of Aeronautics and Astronautics, 1969. AIAA Paper 69-354, 1969, рр. 1-6.
[6] Moretti G. Conformal mapping for computations of steady, three-dimensional, supersonic flows. Numerical/Laboratory Computer Methods in Fluid Mechanics. ASME, 1976, рр. 1-11.
[7] Kovalenko V.V., Minaylos A.N. Raschet nevyazkogo sverkhzvukovogo techeniya okolo kombinatsii krylo - fyuzelyazh [Computing inviscid supersonic flow parameters near the wing-body configuration]. Trudy TsAGI - TsAGI Proceedings, 1984, iss. 2251, pp. 12-21.
[8] Zhilin Yu.L., Kovalenko V.V. Uchenye zapiski TsAGI - TsAGI Science Journal, 1998, vol. 29, no. 3-4, pp. 111-122.
[9] Zhilin Yu.L. Teoriya zvukovogo udara [Sonic boom theory]. Trudy TsAGI - TsAGI Proceedings, 1973, iss. 1489, pp. 13-22.