Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Compaction of high-velocity metal elements produced by shaped charges through the magnetic pulse action

Published: 01.08.2024

Authors: Fedorov S.V., Bolotina I.A., Gorelov V.I., Strukov Yu.A.

Published in issue: #8(152)/2024

DOI: 10.18698/2308-6033-2024-8-2375

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

High-speed metal elements produced by an explosion could be used to test the rocket and space systems for resistance to the meteoroids and space debris fragments impact. Microdamage accumulation resulting from intense plastic deformation leads to a decrease in average density of the high-speed elements formed during explosive compression of the profiled metal liners. The paper proposes to introduce action on the elements of the magnetic field produced along the motion trajectory before interaction with the target to compact such elements in testing the anti-meteor protection with their help. Based on numerical simulation within the framework of one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the paper studies physical processes occurring in the porous conducting elasto-plastic cylinder placed in the magnetic field. Using this model, magnetic pulse parameters required in steel and aluminum elements compaction were determined.

 EDN MHPRNG


References
[1] Novikov L.S. Vozdeystvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty [Impact of solid particles of natural and artificial origin on spacecraft]. Moscow, Universitetskaya Kniga Publ., 2009, 104 p.
[2] Zelentsov V.V. Problemy melkogo kosmicheskogo musora [Problems of small debris]. Nauka i obrazovanie. MGTU im. N.E. Baumana — Science and Education. Bauman MSTU Edition, 2015, no. 4, pp. 89–104. https://doi.org/10.7463/0415.0764904
[3] Hu Di-qi, Chi Run-qiang, Liu Yu-yan, Pang Bao-jun. Sensitivity analysis of spacecraft in micrometeoroids and orbital debris environment based on panel method. Defence Technology, 2023, vol. 19, pp. 126–142.
[4] Leun E.V., Nesterin I.M., Pichkhadze K.M., Polyakov A.A., Sysoev V.K. Obzor skhem penetratorov dlya kontaktnykh issledovaniy kosmicheskikh obyektov [A review of penetrator designs for contact studies of space objects]. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2022, no. 2, pp. 103–117.
[5] Fedorov S.V., Fedorova N.A., Veldanov V.A. Ispolzovanie impulsa reaktivnoy tyagi dlya uvelicheniya glubiny proniknoveniya issledovatelskikh moduley v maloprochnye gruntovye pregrady [Jet thrust impulse using for increase in research modules penetration depth into low-strength soil targets]. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Bulletin of the Russian Academy of Missile and Artillery Sciences, 2014, no. 4 (84), pp. 53−63.
[6] Lorenz R.D. Planetar penetrators: their origins, history and future. Advances in Space Research, 2011, vol. 48, no. 3, pp. 403–431.
[7] Fedorov S.V., Fedorova N.A. Vliyanie prochnostnykh svoystv gruntovo-skalnoy pregrady na glubinu proniknoveniya udarnikov pri dopolnitelnom deystvii impulsa reaktivnoy tyagi [Influence of the soil and rocky target strength properties on projectiles penetration depth with additional action of the jet thrust impulse]. Vestnik MGTU im. N.E. Baumana — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2016, no. 4, pp. 40–56.
[8] Hyde J.L., Christiansen E.L., Kerr J.H. Meteoroid and orbital debris risk mitigation in a low Earth orbit satellite constellation. International Journal of Impact Engineering, 2001, vol. 26, pp. 345–356.
[9] Veniaminov S.S., Chervonov A.M. Kosmicheskiy musor — ugroza chelovechestvu [Space debris is a threat to humanity]. Moscow, IKI RAN Publ., 2012, 192 p.
[10] Christiansen E. Design and performances equations for advanced meteoroid and debris shield. International Journal of Impact Engineering, 1993, vol. 14, pp. 145–156.
[11] Zelentsov V.V. Zaschita kosmicheskogo apparata ot vozdeystviya fragmentov melkogo kosmicheskogo musora [Protecting spacecraft fragments from exposure to small debris]. Nauka i obrazovanie. MGTU im. N.E. Baumana — Science and Education. Bauman MSTU Edition, 2015, no. 6, pp. 123–142. https://doi.org/10.7463/0615.0778339
[12] Khabibullin M.V., Krivosheina M.N., Sammel A.Yu. Matematicheskoe modelirovanie udarnogo vozdeystviya fragmentov kosmicheskogo musora na illyuminatory kosmicheskikh apparatov [Mathematical simulation of the shock action of the space debris fragments on the spacecraft windows]. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2019, vol. 92, no. 6, pp. 1501–1508.
[13] Nazarenko A.I. Modelirovanie kosmicheskogo musora [Space debris simulation]. Мoscow, IKI RAN Publ., 2013, 216 p.
[14] Vorobyev A.A., Zykova T.S., Spitsyn D.D., Udintsev R.D., Yanevsky V.D., Kazantsev S.G. Modelirovanie vozdeystviya mikrometeoritov i fragmentov kosmicheskogo musora na kosmicheskie apparaty [Modeling the impact of micrometeorites and fragments of space debris on spacecraft]. Voprosy elektromekhaniki. Trudy NPP BNIIEM — Electromechanical matters. VNIIEM studies, 2011, vol. 120, pp. 27–30.
[15] Baleevsky А.G., Kiselev Yu.G., Mogilev V.А., Meltsas V.Yu., Fateev Yu.A., Shurov Yu.V., Shemarulin V.E. Vysokoskorostnoe metanie kompaktnykh elementov [High-velocity launching of compact elements]. Sbornik dokladov nauch. konf. Volzhskogo regionalnogo tsentra RARAN “Sovremennye metody proektirovaniya i otrabotki raketno-artilleriyskogo vooruzheniya [Proceedings of the scientific conference of the RAMAS Volga Regional Center “Advanced methods of design and development of the missile and artillery weapons]. Sarov, VNIIEF Publ., 2000, pp. 244–248.
[16] Cable A.J. High-velocity impact phenomena. New York and London, Academic Press, 1970 [In Russ.: Keybl A. Uskoriteli dlya metaniya so sverkhvysokimi skorostyami. Vysokoskorostnye udarnye yavleniya. Moscow, Mir Publ., 1973, pp. 13–28.].
[17] Merzhievskiy L.A., Titov V.M., Fadeenko Yu.I., Shvetsov G.A. Vysokoskorostnoe metanie tverdykh tel [High-speed launching of solid bodies]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 1987, vol. 23, no. 5, pp. 576–589.
[18] Orlenko L.P., ed. Fizika vzryva. [Physics of Explosion]. In 2 vol. Moscow, Fizmatlit Publ., 2004, vol. 2, 656 p.
[19] Gerasimov S.I., Malyarov D.V., Sirotkina A.G., Kapinos S.A., Kalmykov A.P., Knyazev A.S. Vzryvnye metatelnye ustroystva kumulyativnogo tipa dlya formirovaniya vysokoskorostnykh kompaktnykh elementov [Explosive cumulative projectors for forming high-velocity compact elements]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2020, vol. 56, no. 4, pp. 486–493.
[20] Fedorov S.V. O realizatsii printsipa implozii v kumulyativnykh zaryadakh s polusfericheskimi oblitsovkami degressivnoy tolshchiny [On implementation of implosion principle in shaped charges with hemispherical liners of degressive thickness]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 3, pp. 71–92.
[21] Rumyantsev B.V., Mikhaylin A.I. Jet-charge as an effective tool in the development of spacecraft shields testing against micrometeoroids and man-made debris. Acta Astronautica, 2015, vol. 109, pp. 166–171.
[22] Andreev S.G., Boyko M.M., Klimenko V.Yu. Metatelnoe deystvie zaryadov vzryvchatykh veshchestv pri rasprostranenii initsiiruyushchikh i detonatsionnykh voln [Explosive charge projectile action during initiating and detonating wave propagation]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 4. https://doi.org/10.18698/2308-6033-2016-04-1483
[23] Kruglov P.V., Kolpakov V.I. Analiz vliyaniya raznotolshchinnosti profilya metallicheskikh segmentnykh oblitsovok na formu vysokoskorostnykh udlinennykh elementov [Analysis of influence of metal linings profile heterogeneity on the high-speed elongated elements shape]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. https://doi.org/10.18698/2308-6033-2018-7-1782
[24] Fedorov S.V., Ladov S.V., Nikolskaya Ya.M., Baskakov V.D., Baburin M.A., Kurepin A.E., Gorbunkov A.A., Pirozerskii A.S. Formirovanie potoka vysokoskorostnykh chastits kumulyativnymi zaryadami s oblitsovkoy tipa sfera-polusfera degressivnoy tolshchiny [Formation of a high-velocity particle flow from shaped charges with the hemisphere-cylinder liners of digressive thickness]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2017, vol. 53, no. 4, pp. 122–15.
[25] Selivanov V.V., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Research of the explosive formation of a compact element for meteoroids fragments and space debris modeling. Acta Astronautica, 2019, vol. 163, pp. 84–90.
[26] Zhdanov I.V., Knyazev A.S., Malyarov D.V. Poluchenie vysokoskorostnykh kompaktnykh elementov trebuyemykh mass pri proportsionalnom izmenenii razmerov kumulyativnykh ustroystv [Obtaining high-velocity compact elements of required mass with proportional change in the size of shaped-charge devices]. Trudy Tomskogo gosudarstvennogo universiteta. T. 276. Seriya fiziko-matematicheskaya [Proceedings of the Tomsk State University. Vol. 276. Physics and Mathematics Series], 2010, vol. 276, pp. 193–195.
[27] Gehring J.W. High-velocity impact phenomena. New York and London, Academic Press, 1970 [In Russ.: Gering J. Vysokoskorostnoy udar s inzhenernoy tochki zreniya. Vysokoskorostnye udarnye yavleniya. Moscow, Mir Publ., pp. 463–514].
[28] Afanasyeva S.A., Belov N.N., Kozorezov K.I., Khabibullin M.V., Yugov N.T. Osobennosti vysokoskorostnogo proniknoveniya silnoporistogo udarnika v mishen konechnoy tolshchiny [The features of high-velocity penetration of a highly porous impactor into a target of finite thickness]. Doklady Akademii nauk — Proceeding of the Academy of Sciences, 1997, vol. 355, no. 2, pp. 192–195.
[29] Fedorov S.V., Babkin A.V., Ladov S.V. Proyavlenie magnitokumulyativnogo effekta pri vzryve kumulyativnogo zaryada s sozdannym v ego oblitsovke magnitnym polem [Magnetic cumulative effect upon the explosion of a shaped charge with an axial magnetic field in its sheath]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 2003, vol. 73, no. 8, pp. 111–117.
[30] Babkin A.V., Kruzhkov V.A., Lugovoy E.V., Fedorov S.V. Matematicheskoe modelirovanie rastyazheniya kumulyativnoy strui pri propuskanii cherez nee elektricheskogo toka [Mathematical simulation of stretching of the shaped-charge jet when electric current is passing through it]. Oboronnaya tekhnika — Defence Technology, 1993, no. 9, pp. 36–39.
[31] Fedorov S.V., Babkin A.V., Ladov S.V. Osobennosti inertsionnogo udlineniya vysokogradientnogo provodyashchego sterzhnya v prodolnom nizkochastotnom magnitnom pole [Salient features of inertial stretching of a high-gradient conducting rod in a longitudinal low-frequency magnetic field]. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2001, vol. 74, no. 2, pp. 79–86.
[32] Babkin A.V., Kolychev M.E., Ladov S.V., Fedorov S.V. O vozmozhnom mekhanizme razrusheniya kumulyativnoy strui impulsom toka [On probable mechanism of shaped-charge jet disruption by a current pulse]. Oboronnaya tekhnika — Defense Technology, 1995, no. 4, pp. 47–54.
[33] Fedorov S.V. Usilenie magnitnogo polya v metallicheskikh kumulyativnykh struyakh pri ikh inertsionnom udlinenii [Magnetic-field amplification in metal shaped-charge jets during their inertial elongation]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2005, vol. 41, no. 1, pp. 120–128.
[34] Landau L.D., Lifshits E.M. Elektrodinamika sploshnykh sred [Electrodynamics of Continuous Media]. Moscow, Nauka Publ., 1982, 624 p.
[35] Knopfel G. Pulsed High Magnetic Fields. Amsterdam, North-Holland Publ. Company, 1970 [In Russ.: Knopfel G. Sverkhsilnye impulsnye magnitnye polya. Moscow, Mir Publ., 373 p.].
[36] Wilkins M.L. Calculation of elastic-plastic flow. Methods in Computational Physics, Ed. B. Alder et al., Vol. 3. New York, Academic Press, 1964 [In Russ.: Uilkins M.L. Raschet uprugoplasticheskikh techeniy. Vychislitelnye metody v gidrodinamike. Moscow, Mir Publ., 1967, pp. 211−263.].
[37] Johnson J.N. Dynamic fracture and spallation in ductile solids. Journal of Applied Physics, 1981, vol. 52, no. 4, pp. 2812–2825.