Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

An example of using the dynamic method in calculating the stability of the structure of a mobile service towerfor Soyuz-ST launch vehicle

Published: 20.04.2023

Authors: Grigoriev V.G., Menshikov A.A.

Published in issue: #4(136)/2023

DOI: 10.18698/2308-6033-2023-4-2265

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

To assess stability of large-sized spatial beam-rod structures loaded with several force factors, the paper proposes to use the frequency-modal method based on solving the problem of natural oscillations in a preloaded structure. This approach makes it possible to obtain stability margin coefficients from action of each loading component for structures with geometric or physical nonlinearity. Using this method implemented in the Siemens Femap with NX Nastran finite element software package, the paper analyzes design of the mobile service tower of the Soyuz-ST launch vehicle (Kourou Space Center, French Guiana). Results show significant increase in the stability margin coefficient in bearing strength for the system as a whole, when using dynamic approach compared to the standard approach based on the Eulerian theory of adjacent equilibrium states. The results obtained demonstrate effectiveness of the proposed method.

[1] Kuznetsov D.N. Ustoychivost sostoyaniya ravnovesiya nesuschikh konstruktsiy v sostave konechno-elementnykh sistem [Stability of the equilibrium state of bearing structures in composition of finite element systems]. Stroitelnaya mekhanika i konstruktsii — Construction Mechanics and Structures, 2019, no. 4 (23), pp. 75–85.
[2] Agapov V.P. Staticheskie i dinamicheskie raschety inzhenernykh konstruktsiy v vychislitelnom komplekse PRINSS [Static and dynamic calculations of engineering structures in the PRINCE computing complex]. Mashinostroyeniye i inzhenernoye obrazovaniye — Mechanical Engineering and Engineering Education, 2006, no. 1 (6), pp. 39–50.
[3] Titarenko F. Nelineynyi mir i instrumenty dlya rascheta slozhnykh nelineynykh zadach metodom konechnykh elementov [Nonlinear world and tools for calculating complex nonlinear problems by the finite element method]. SAPR i grafika — CAD and Graphics, 2021, no. 1 (291), pp. 4–11.
[4] Tusnin A.R. Osobennosti chislennogo rascheta konstruktsiy iz tonkostennykh sterzhney otkrytogo profilya [Features of numerical calculation of structures made of thin-walled rods of an open profile]. Promyshlennoe i grazhdanskoe stroitelstvo — Industrial and Civil Engineering, 2010, no. 11, pp. 60–62.
[5] Rychkov S.P. Modelirovanie konstruktsiy v srede Femap with NX Nastran [Modeling of structures in the Femap environment with NX Nastran]. Moscow, DMK Press Publ., 2013, 784 p.
[6] Agapov V.P. Uchet geometricheskoy nelineynosti i proektirovanie mekhanicheskikh attraktsionov [The account of geometric nonlinearity in the design and analysis of the mechanized attractions]. Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy — Structural Mechanics of Engineering Constructions and Buildings, 2005, no. 1, pp. 49–54.
[7] Olurombi A.R. Vliyanie sostoyaniya postavki stalnykh trub na nesuschuyu sposobnost pri szhatii s izgibom [Influence of the state of supply of steel pipes on the bearing capacity during compression with bending]. Stroitelnaya mekhanika i raschet sooruzheniy — Structural Mechanics and Analysis of Constructions, 2019, no. 5 (286), pp. 57–63.
[8] Kravchenko G.M., Trufanova E.V., Boyko A.G., Adleiba T.S. Issledovanie obschey ustoychivosti karkasa zdaniya metodom konechnykh elementov [Research of the stability analysis for frame buildings using finite element method]. Stroitelstvo i arkhitektura — Construction and Architecture, 2019, vol. 7, no. 1, pp. 45–48.
[9] Sventikov A.A., Kuznetsov D.N. Zhivuchest stalnogo kupola s reshetkoy iz shestigrannikov [Durability of steel spherical dome with lattice from hexagons]. Stroitelnaya mekhanika i konstruktsii — Construction Mechanics and Structures, 2021, no. 1 (28), pp. 87–97.
[10] Gnezdilov V.A., Grigoriev V.G., Kournikov I.E., Menshikov A.A. Metodika pokomponentnogo analiza zapasov ustoychivosti krupnogabaritnykh prostranstvennykh konstruktsiy pri deystvii mnogofaktornykh nagruzok [A method of componentwise analysis of stability margins for large-sized spatial structures under multifactor loads]. Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy — Structural Mechanics of Engineering Constructions and Buildings, 2014, no. 5, pp. 51–60.
[11] Eurocode 1: Actions on structures. Pt. 1−4: General actions – Wind actions. BS EN 1991-1-4:2005. Brussels, CEN / European Committee for Standardization. April 2005. 112. External Human-Induced Events in Site Evaluation for Nuclear Power.
[12] Eurocode No. 2. Design of Concrete Structures. Pt. 1: General Rules and Rules for Buildings (Revised Final Draft). October 1990. 115. Florence A. L. Clamped Circular Rigid-Plastic Plates under Central Blast.
[13] Tyukalov Yu.Ya. The functional of additional energy for stability analysis of spatial rod systems. Magazine of Civil Engineering, 2017, no. 2 (70), pp. 18–32.
[14] Krasnoschekov Yu.V., Zapoleva M.Yu. Ustoychivost poyasov antennykh opor [Stability of antenna support belts]. Vestnik Sibirskogo gosudarstvennogo avtomobilno-dorozhnogo universiteta — The Russian Automobile and Highway Industry Journal, 2022, vol. 19, no. 6 (88), pp. 936–948.