Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Numerical analysis of the explosive aluminium particles formation in the 2…16 km/s speed range

Published: 29.01.2023

Authors: Kolpakov V.I., Fedorov S.V., Vinogradova E.P.

Published in issue: #1(133)/2023

DOI: 10.18698/2308-6033-2023-1-2240

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

Explosive gun launchers are used to test rocket and space systems for their resistance to the impact of meteoroids and fragments of space debris. This work applies numerical simulation within the framework of the two-dimensional axisymmetric problem of continuum mechanics and substantiates design parameters of the shaped charges that form compact aluminum particles weighing up to 1 g and more in a wide range of speeds (from 2 km/s to 16 km/s). Simulation was carried out in relation to the shaped charges of different diameters (from 20 mm to 100 mm) using the ANSYS/AUTODYN, ERUDIT and KOLDUN computer systems. It is shown that charges of larger diameter are required to form faster particles identical in mass. Besides, it is necessary to use segmental cumulative liners of digressive thickness to form particles approaching the lower boundary of the indicated speed range. Wherein, to form faster particles moving at the speeds from 10 km/s to 16 km/s, it is necessary to implement the combined shaped charge liners, where the jet-forming part is shaped as a semi-ellipsoid or a semi-superellipsoid of rotation of the digressive thickness.


References
[1] Veniaminov S.S., Chervonov A.M. Kosmicheskii mysor — ugroza chelovechestvu [Space Debris as a Threat to Mankind]. Moscow, SRI RAN Publ., 2012, 192 p.
[2] Shustov B.M. O fundamentalnykh issledovaniyakh po probleme kosmicheskogo musora [On fundamental research on space debris problem]. In: Vserossiskaya naychnaya konferentsiya s mezhdunarodnym uchastiem “Kosmicheskiy mysor: fundamentalnye i prakticheskie aspekty ugrozy“ [All-Russian Scientific Conference with International Participation “Space debris: Fundamental and Practical Aspects of the Threat“]. Moscow, SRI RAN Publ., 2019, pp. 7–14.
[3] Nazarenko A.I. Modelirovanie kosmicheskogo musora [Space debris modeling]. Moscow, SRI RAN Publ., 2013, 216 p.
[4] Novikov L.S. Vozdeistvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty [The effect of natural and artificial solid particles on space vehicles]. Moscow, Universitetskaya Kniga Publ., 2009, 104 p.
[5] Hyde J.L., Christiansen E.L., Kerr J.H. Meteoroid and orbital debris risk mitigation in a low Earth orbit satellite constellation. International Journal of Impact Engineering, 2001, vol. 26, pp. 345–356.
[6] Eichler P., Reynolds R., Bade A., Johnson N. Historical evolution and current status of the number and mass of objects in Earth orbit. Orbital Debris Quarterly News, NASA JSC Houston, 1998, vol. 3, no. 4, p. 8.
[7] Smirnov N.N., Nazarenko A.I., Kiselev A.B. Modelling of the space debris evolution based on continua mechanics. European Space Agency (Special Publication) ESA SP, 2001, vol. 1, no. 473, pp. 391–396.
[8] Christiansen E. Design and performances equations for advanced meteoroid and debris shield. International Journal of Impact Engineering, 1993, vol. 14, pp. 145–156.
[9] Smirnov N.N., Kiselev A.B., Kondratyev K.A., Zolkin S.N. Impact of debris particles on space structures modeling. Acta Astronautica, 2010, vol. 67, pp. 333–343.
[10] Merzhievsky L.A., Titov V.M., Fadeenko Yu.I., Shvetsov G.A. Vysokoskorostnoe metanie tverdykh tel [High-speed launching of solid bodies]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 1987, vol. 23, no. 5, pp. 576–589.
[11] Gerasimov S.I., Erofeev V.I., Zubankov A.V., Kikeev V.A., Pisetsky V.V. Matematicheskoe modelirovanie i eksperimentalnoe issledovanie beskontactnogo izmeritelnogo secheniya v zadache vysokoskorostnoy aeroballistiki [Mathematical simulation and experimental investigation of contactless measuring section in the problem of high-velocity ballistic flights]. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2021, vol. 94, no. 1, pp. 174–179.
[12] Piekutowski A.J., Poormon K.L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute. International Journal of Impact Engineering, 2006, vol. 33, pp. 615–624.
[13] Thornhill T.F., Chhabildas L.C., Reinhart W.D., Davidson D.L. Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. International Journal of Impact Engineering, 2006, vol. 33, pp. 799–811.
[14] Rashleigh S.C., Marshall RA. Electromagnetic acceleration of macroparticles to high velocities. Journal of Applied Physics, 1978, vol. 49, no. 4, pp. 2540–2542.
[15] Stankevich S.V., Shvetsov G.A. Predelnye kinematicheskie kharakteristiki relsovykh elektromagnitnykh uskoritelei s metallicheskim yakorem vo vneshnem magnitnom pole [Ultimate kinematic characteristics of rail electromagnetic launchers with metal armatures in an external magnetic field]. Prikladnya mekha-nika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2014, vol. 55, no. 5, pp. 736–741.
[16] Orlenko L.P., ed. Fizika vzryva [Explosion Physics]. In 2 vols. Vol. 2. Moscow, Fizmatlit Publ., 2004, 656 p.
[17] Gerasimov S.I., Malyarov D.V., Sirotkina A.G., Kapinos S.A., Kalmykov A.P., Knyazev A.S. Vzryvnye metatelnye ustroystva kumulyativnogo tipa dlya formirovaniya vysokoskorostnykh kompaktnykh elementov [Explosive shaped projectors for forming high-velocity compact elements]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2020, vol. 56, no. 4, pp. 486–493.
[18] Greenaway M.W., Proud W.G., Field J.E., Goveas S.G. A laser-accelerated flyer plates. International Journal of Impact Engineering, 2003, vol. 29, pp. 317–321.
[19] Fedorov S.V., Kolpakov V.I., Vinogradova E.P., Bolotina I.A. Сombined shaped-charge liners for explosion formation of aluminum particles with velocities up to 16 km/s. Acta Astronautica, 2022, vol. 190, pp. 231–240.
[20] Katayama M., Kibe S. Numerical study of the conical shaped charge for space debris impact. International Journal of Impact Engineering, 2001, vol. 26, pp. 357–368.
[21] Fedorov S.V., Babkin A.V., Ladov S.V. O vliyanii magnitnogo polya, sozdavaemogo v oblitsovke kumulyativnogo zaryada, na ego probivnoe deystvie [Influence of the magnetic field produced in the liner of a shaped charge on its penetrability]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 1999, vol. 35, no. 5, pp. 598–599.
[22] Zhdanov I.V., Knyazev A.S., Malyarov D.V. Poluchenie vysokoskorostnykh kompaktnykh elementov trebuyemykh mass pri proportsionalnom izmenenii razmerov kumulyativnykh ustroystv [Obtaining high-velocity compact elements of required mass with proportional change in the size of shaped-charge devices]. Trudy Tomskogo gosudarstvennogo universiteta. Seriya fiziko-matematicheskaya — Proceedings of the Tomsk State University. Physics and Mathematics Series, 2010, vol. 276, pp. 193–195.
[23] Fedorov S.V. O realizatsii printsipa implozii v kumulyativnykh zaryadakh s polusfericheskimi oblitsovkami degressivnoy tolschiny [On implementation of implosion principle in shaped charges with hemispherical liners of degressive thickness]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2017, no. 3. pp. 71–92. https://doi.org/10.18698/1812-3368-2017-3-71-92
[24] Selivanov V.V., Fedorov S.V., Nikolskaya Ya.M., Ladov S.V. Compact element formation for the modeling of the high-velocity impacts of particles onto spacecraft materials and construction elements in earth conditions. Acta Astronautica, 2017, vol. 135, pp. 34–43.
[25] Selivanov V.V., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Research of the explosive formation of a compact element for meteoroids fragments and space debris modeling. Acta Astronautica, 2019, vol. 163, pp. 84–90.
[26] Kolpakov V.I. Matematicheskoe modelirovanie funktsionirovaniya vzryvnykh ustroistv [Mathematical simulation of the explosive devices’ performance]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2012, no. 2, pp. 1–36 (77-30569/334177). Available at: http://technomag.edu.ru/doc/334177.html
[27] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Chislennye metody v zadachakh fiziki bystroprotekayuschikh protsessov. [Numerical methods in problems of physics of fast processes.]. 3rd ed., rev. Moscow, BMSTU Publ., 2021, 370 p.
[28] Kolpakov V.I., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Analiz vliyaniya fiziko-mekhanicheskikh kharakteristik materiala kumulyativnoy oblitsovki na parametry vysokoskorostnogo elementa [Analysis of the effect of physico-mechanical characteristics of cumulative liner material on parameters of a high-speed element]. Zhurnal tekhnicheskoi fiziki — Technical Physics, 2018, vol. 88, no. 12, pp. 1829–1836.
[29] Fedorov S.V. K opredeleniyu glubiny pronikaniya poristykh udarnikov pri giperskorostnom vzaimodeystvii [On the penetration depth of a porous striker moving with a hypersonic velocity]. Zhurnal tekhnicheskoi fiziki — Technical physics, 2007, vol. 77, no. 10, pp. 131–134.
[30] Fedorov S.V., Bayanova Ya.M. Hydrodynamic model for penetration of extended projectiles with consideration of material compressibility. In: Proc. of the 25th Int. Symp. on Ballistics. Beijing, China, 2010, pp. 1032–1039.
[31] AUTODYN theory manual revision. Century Dynamics Inc. California, USA, 2005, 235 p.
[32] Kolpakov V.I. Opredelenie constant uravneniya sostoyaniya produktov detonatsii v forme Jones — Wilkins — Lee [Determination of constants of the equation of state of detonation products in the Jones — Wilkins — Lee form]. Izvestiya RARAN (Proceedings of the Russian Academy of Rocket and Artillery Sciences), 2016, no. 4 (28), pp. 87–92.
[33] Selivanov V.V. Mekhanika razrusheniya deformiruemogo tela [Mechanics of destruction of a deformable body]. 2nd ed., rev. Moscow, BMGTU Publ., 2006, 424 p.
[34] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. New York, John Wiley & Sons Inc., 1989, 389 p.