On the material shock-wave acceleration in a system of plates with the decreasing acoustic hardness
Authors: Fedorov S.V., Starshikova A.S., Lyushnin S.A.
Published in issue: #10(130)/2022
DOI: 10.18698/2308-6033-2022-10-2216
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
To obtain the high-speed metal particles in simulating the impact of meteoroids and fragments of space debris on the spacecraft protective screens, shock-wave acceleration of thin metal plates is used at their collision with the impact element accelerated by a light-gas ballistic installation. Such an element is provided at the front end with an insert of layers with acoustic stiffness decreasing outwards. The effect of increasing speed of a plate accelerated by the plate impact is considered, when an intermediate system of plates with monotonically decreasing acoustic impedance is installed between it and the impact element, which values are between the impact element and the accelerated plate impedances. Based on numerical simulation in the framework of a plane one-dimensional problem of continuum mechanics, the shock-wave acceleration of an aluminum plate was studied in its direct collision with a tantalum impact element, as well as in the presence of one intermediate plate of copper or two intermediate plates of copper and titanium between them. An increase in the coefficient of accelerated plate raising speed relative to the impact element speed was registered with an increase in the number of intermediate plates. Using acoustic approximation, an analytical solution to the problem of plate acceleration in the presence of a system of the infinite number of infinitely thin plates with the continuously decreasing acoustic impedance between it and the impact element was obtained.
References
[1] Christiansen E. Design and performances equations for advanced meteoroid and debris shield. International Journal of Impact Engineering, 1993, vol. 14, pp. 145–156.
[2] Smirnov N.N., Kiselev A.B., Kondratyev K.A., Zolkin S.N. Impact of debris particles on space structures modeling. Acta Astronautica, 2010, vol. 67, pp. 333–343.
[3] Fahrenthold E.P., Hernandez R.J. Simulation of orbital debris impact on the Space Shuttle wing leading edge. International Journal of Impact Engineering, 2006, vol. 33, pp. 231–243.
[4] Gerasimov A.V., Dobritsa D.B., Pashkov S.V., Khristenko Yu.F. Teoretiko-eksperimentalnoe issledovanie sposoba zaschity kosmicheskikh apparatov ot vysokoskorostnykh chastits [Theoretical and experimental study of a method for a spacecraft protection from the high-speed particles]. Kosmicheskie issledovaniya — Cosmic Research, 2016, vol. 54, no. 2, pp. 118–126.
[5] Novikov L.S. Vozdeystvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty [Impact of solid particles of natural and artificial origin on the spacecraft]. Moscow, Universitetskaya kniga Publ., 2009, 109 p.
[6] Hyde J.L., Christiansen E.L., Kerr J.H. Meteoroid and orbital debris risk mitigation in a low Earth orbit satellite constellation. International Journal of Impact Engineering, 2001, vol. 26, pp. 345–356.
[7] Zelentsov V.V. Problemy melkogo kosmicheskogo musora [Problems of small space debris]. Nauka i obrazovanie. MGTU im. N.E. Baumana — Science and Education. Bauman Moscow State Technical University, 2015, no. 4, pp. 89–104. https://doi.org/10.7463/0415.0764904
[8] Smirnov N.N., Nazarenko A.I., Kiselev A.B. Modelling of the space debris evolution based on continua mechanics. European Space Agency (Special Publication) ESA SP, 2001, vol. 1, no. 473, pp. 391–396.
[9] Cable A.J. Hypervelocity accelerators. In: High-velocity impact phenomena. Kinslow R., ed. New York, London, Academic Press, 1970, 592 p.
[10] Minin V.F., Minin I.V., Minin O.V. Hypervelocity fragment formation technology for ground-based laboratory tests. Acta Astronautica, 2014, vol. 104, pp. 77–83.
[11] Zlatin N.A., Krasilschikov A.P., Mishin G.I., Popov N.N. Ballisticheskie ustanovki i ikh primenenie v eksperimentalnykh issledovaniyakh [Ballistic installations and their application in the experimental studies]. Moscow, Nauka Publ., 1974, 344 p.
[12] Piekutowski A.J., Poormon K.L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute. International Journal of Impact Engineering, 2006, vol. 33, pp. 615–624.
[13] Martynov V.V., Shunevich N.A. Napravleniya uluchsheniya kharakteristik legkogazovoy ustanovki [Areas of improving the light-gas installation performance]. Izvestiya TulGU, Tekhnicheskie nauki — Proceedings of the Tula State University, Technical Sciences, 2022, vol. 4, pp. 497–501.
[14] Khristenko Yu.F., Zelepugin S.A., Gerasimov A.V. New light-gas guns for the high-velocity throwing of mechanical particles. ARPN Journal of Engineering and Applied Sciences, 2017, vol. 12, no. 22, pp. 6606–6610.
[15] Rashleigh S.C., Marshall R.A. Electromagnetic acceleration of macroparticles to high velocities. Journal of Applied Physics, 1978, vol. 49, no. 4, pp. 2540–2542.
[16] Stankevich S.V., Shvetsov G.A. Predelnye kinematicheskie kharakteristiki relsovykh elektromagnitnykh uskoriteley s metallicheskim yakorem vo vneshnem magnitnom pole [Ultimate kinematic characteristics of the rail electromagnetic launchers with metal armatures in the external magnetic field]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2014, vol. 55, no. 5, pp. 14–20.
[17] Lemke R.W., Knudson M.D., Davis J.-P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. International Journal of Impact Engineering, 2011, vol. 38, pp. 480–485.
[18] Orlenko L.P., red. Fizika vzryva [Physics of explosion]. In two volumes. Moscow, Fizmatlit Publ., 2004, vol. 2, 656 p.
[19] Andreev S.G., Boyko M.M., Klimenko V.Yu. Metatelnoe deystviye zaryadov vzryvchatykh veshchestv pri rasprostranenii initsiiruyuschikh i detonatsionnykh voln [Explosive charge projectile action during initiating and detonating wave propagation]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 4. http://10.18698/2308-6033-2016-04-1483
[20] Kruglov P.V., Kolpakov V.I. Analiz vliyaniya raznotolschinnosti profilya metallicheskikh segmentnykh oblitsovok na formu vysokoskorostnykh udlinennykh elementov [Analysis of influence of the metal linings profile heterogeneity on the high-speed elongated elements shape]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. http://dx.doi.org/10.18698/2308-6033-2018-7-1782
[21] Fedorov S.V. O vozmozhnosti “otsechki” lidiruyuschego vysokoskorostnogo uchastka metallicheskoy strui pri vzryve kumulyativnogo zaryada v aksialnom magnitnom pole [On the possibility of “cutting-off” the leading high-speed portion of the metal jet in explosion of a shaped charge in the axial magnetic field]. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy — Ammunitions and high-energy condensed systems, 2008, no. S2, pp. 73–80.
[22] Fedorov S.V. Usilenie magnitnogo polya v metallicheskikh kumulyativnykh struyakh pri ikh inertsionnom udlinenii [Magnetic field amplification in metal shaped-charge jets during their inertial elongation]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2005, vol. 41, no. 1, pp. 120–128.
[23] Selivanov V.V., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Research of the explosive formation of a compact element for meteoroids fragments and space debris modeling. Acta Astronautica, 2019, vol. 163, pp. 84–90.
[24] Baburin M.A., Baskakov V.D., Zarubina O.V., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Primenenie profilirovannykh po tolschine zagotovok dlya upravleniya tolschinoy stenki shtampuemykh svintsom obolochnykh detaley [Application of thickness-shaped workpieces to control wall thickness of the lead-formed shell parts]. Tekhnologiya metallov — Russian Metallurgy (Metally), 2016, no. 11, pp. 2–8.
[25] Fedorov S.V., Ladov S.V., Nikolskaya Ya.M., Baskakov V.D., Baburin M.A., Kurepin A.E., Gorbunkov A.A., Pirozerskiy A.S. Formirovanie potoka vysokoskorostnykh chastits kumulyativnymi zaryadami s oblitsovkoy polusfera-tsilindr degressivnoy tolschiny [Formation of the high-velocity particle flow by shaped charges with the hemisphere-cylinder linear of the digressive thickness]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2017, vol. 53, no. 4, pp. 122–125.
[26] Greenaway M.W., Proud W.G., Field J.E., Goveas S.G. A laser-accelerated flyer plates. International Journal of Impact Engineering, 2003, vol. 29, pp. 317–321.
[27] Chhabildas L.C., Kmetyk L.N., Reinhart W.D., Hall C.A. Enhanced hypervelocity launcher — capabilities to 16 km/s. International Journal of Impact Engineering, 1995, vol. 17, pp. 183–194.
[28] Thornhill T.F., Chhabildas L.C., Reinhart W.D., Davidson D.L. Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. International Journal of Impact Engineering, 2006, vol. 33, pp. 799–811.
[29] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Prikladnaya mekhanika sploshnykh sred. V trekh tomakh. T. 3. Chislennye metody v zadachyakh fiziki bystroprotekayuschikh protsessov [Applied Continuum Mechanics. In 3 volumes. Vol. 3. Numerical methods in problems of physics of the fast-flowing processes]. Moscow, BMSTU Publ., 2006, 520 p.
[30] Gerasimov A.V., Krektuleva R.A. Model deformirovaniya i razrusheniya mnogokomponentnoy poristoy uprugoplasticheskoy sredy s nepreryvnym izmeneniem fiziko-mekhanicheskikh kharakteristik [Deformation and fracture model for a multicomponent elastoplastic porous medium with continuous variation of the physicomechanical characteristics]. Problemy prochnosti — Strength of Materials, 1999, no. 2, pp. 139–150.
[31] Gerasimov A.V, Shalkovsky D.M. Udarno-volnovoe nagruzhenie plastin, soderzhaschikh sloi funktsionalno gradientnykh materialov [Shock-wave loading of plates containing layers of functionally gradient materials]. Mekhanika kompozitsionnykh materialov i konstruktsiy — Journal of Composite Mechanics and Design, 2002, vol. 8, no. 4, pp. 533–542.