Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

On the possibility of using shaped charges with combined liners to obtain aluminum particles with speeds at the 16 km/s level

Published: 21.09.2022

Authors: Fedorov S.V., Kolpakov V.I., Vinogradova E.P., Bolotina I.A.

Published in issue: #9(129)/2022

DOI: 10.18698/2308-6033-2022-9-2207

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

Explosive gun launchers are used to test rocket and space technology systems for persistence to the effects of meteoroids and fragments of space debris. Based on numerical simulation in the framework of a two-dimensional axisymmetric problem of continuum mechanics, possibilities of obtaining aluminum particles with speeds of up to 16 km/s were considered using shaped charges with a combined shaped charge liners. A high-speed particle is formed as a result of the “cut-off” by the collapsing cylindrical part of the head section combined liner of the jet flow appearing during the collapse of the liner jet-forming part. Simulation was carried out in regard to a shaped charge with the 100 mm diameter using the ANSYS/AUTODYN and ERUDIT computer systems. To achieve the objective set, the liner jet-forming part was of digressive thickness, and its limiting surfaces had the shape of semi-ellipsoid surfaces or revolution semi super ellipsoid. Based on the calculation results, combined liner geometric parameters were selected making it possible to form an aluminum particle with a speed at the 16 km/s level and its mass of tenths of a gram.


References
[1] Hyde J.L., Christiansen E.L., Kerr J.H. Meteoroid and orbital debris risk mitigation in a low Earth orbit satellite constellation. International Journal of Impact Engineering, 2001, vol. 26, pp. 345–356.
[2] Novikov L.S. Vozdeystvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty [Impact of solid particles of natural and artificial origin on spacecraft]. Moscow, Universitetskaya Kniga Publ., 2009, 109 p. (in Russian).
[3] Khabibullin M.V., Krivosheina M.N., Sammel’ A.Yu. Matematicheskoe modelirovanie udarnogo vozdeystviya fragmentov kosmicheskogo musora na illyuminatory kosmicheskikh apparatov [Mathematical simulation of the shock action of the space debris fragments on the spacecraft windows]. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2019, vol. 92, no. 6, pp. 2548–2556.
[4] Eichler P., Reynolds R., Bade A., Johnson N. Historical evolution and current status of the number and mass of objects in Earth orbit. Orbital Debris Quarterly News, NASA JSC Houston, 1998, vol. 3, no. 4, p. 8.
[5] Zelentsov V.V. Problemy melkogo kosmicheskogo musora [Problems of small space debris]. Nauka i obrazovanie. MGTU im. N.E. Baumana — Science and Education. BMSTU, 2015, no. 4, pp. 89–104. DOI: 10.7463/0415.0764904
[6] Smirnov N.N., Nazarenko A.I., Kiselev A.B. Modelling of the space debris evolution based on continua mechanics. European Space Agency (Special Publication) ESA SP, 2001, vol. 1, no. 473, pp. 391–396.
[7] Christiansen E. Design and performances equations for advanced meteoroid and debris shield. International Journal of Impact Engineering, 1993, vol. 14, pp. 145–156.
[8] Smirnov N.N., Kiselev A.B., Kondratyev K.A., Zolkin S.N. Impact of debris particles on space structures modeling. Acta Astronautica, 2010, vol. 67, pp. 333–343.
[9] Cable A.J. Hypervelocity accelerators. In: High-velocity impact phenomena. Ray Kinslow, ed. New York and London, Academic Press, 1970, 592 p.
[10] Merzhievskii L.A., Titov V.M., Fadeenko Yu.I., Shvetsov G.A. Vysokoskorostnoe metanie tverdykh tel [High-speed launching of solid bodies]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 1987, vol. 23, no. 5, pp. 77–91.
[11] Minin V.F., Minin I.V., Minin O.V. Hypervelocity fragment formation technology for ground-based laboratory tests. Acta Astronautica, 2014, vol. 104, pp. 77–83.
[12] Piekutowski A.J., Poormon K.L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute. International Journal of Impact Engineering, 2006, vol. 33, pp. 615–624.
[13] Thornhill T.F., Chhabildas L.C., Reinhart W.D., Davidson D.L. Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. International Journal of Impact Engineering, 2006, vol. 33, pp. 799–811.
[14] Rashleigh S.C., Marshall RA. Electromagnetic acceleration of macroparticles to high velocities. Journal of Applied Physics, 1978, vol. 49, no. 4, pp. 2540–2542.
[15] Stankevich S.V., Shvetsov G.A. Predelnye kinematicheskie kharakteristiki relsovykh elektromagnitnykh uskoriteley s metallicheskim yakorem vo vneshnem magnitnom pole [Ultimate kinematic characteristics of rail electromagnetic launchers with metal armatures in the external magnetic field]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2014, vol. 55, no. 5, pp. 14–20.
[16] Lemke R.W., Knudson M.D., Davis J.-P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. International Journal of Impact Engineering, 2011, vol. 38, pp. 480–485.
[17] Orlenko L.P., ed. Fizika vzryva [Physics of Explosion]. In two volumes. Vol. 2. Moscow, Fizmathlit Publ., 2004, 656 p. (in Russian).
[18] Gerasimov S.I., Malyarov D.V., Sirotkina A.G., Kapinos S.A., Kalmykov A.P., Knyazev A.S. Vzryvnye metatelnye ustroystva kumulyativnogo tipa dlya formirovaniya vysokoskorostnykh kompaktnykh elementov [Shaped explosive gun launchers for forming high-velocity compact elements]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2020, vol. 56, no. 4, pp. 128–136.
[19] Greenaway M.W., Proud W.G., Field J.E., Goveas S.G. A laser-accelerated flyer plates. International Journal of Impact Engineering, 2003, vol. 29, pp. 317–321.
[20] Andreev S.G., Boyko M.M., Klimenko V.Yu. Metatelnoe deystvie zaryadov vzryvchatykh veshchestv pri rasprostranenii initsiiruyshchikh i detonatsionnykh voln [Propellant action of the explosive charges during the initiating and detonating wave propagation]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 4. http://dx.doi.org/10.18698/2308-6033-2016-04-1483
[21] Kruglov P.V., Kolpakov V.I. Analiz vliyaniya raznotolshchinnosti profilya metallicheskikh segmentnykh oblitsovok na formu vysokoskorostnykh udlinennykh elementov [Analysis of influence of metal linings profile heterogeneity on the high-speed elongated elements shape]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. http://dx.doi.org/10.18698/2308-6033-2018-7-1782
[22] Katayama M., Kibe S. Numerical study of the conical shaped charge for space debris impact. International Journal of Impact Engineering, 2001, vol. 26, pp. 357–368.
[23] Fedorov S.V. O vozmozhnosti “otsechki” lidiruyshchego vysokoskorostnogo uchastka metallicheskoy strui pri vzryve kumulyativnogo zaryada v aksialnom magnitnom pole [On the “cut-off” possibility of the leading high-speed portion of the metal jet in explosion of a shaped charge in the axial magnetic field]. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy — Ammunition and high-energy condensed systems, 2008, no. S2, pp. 73–80 (in Russian).
[24] Fedorov S.V. Usilenie magnitnogo polya v metallicheskikh kumulyativnykh struyakh pri ikh inertsionnom udlinenii [Magnetic-field amplification in metal shaped-charge jets during their inertial elongation]. Fizika goreniya i vzryva –Combustion, Explosion and Shock Waves, 2005, vol. 41, no. 1, pp. 120–128.
[25] Zhdanov I.V., Knyazev A.S., Malyarov D.V. Poluchenie vysokoskorostnykh kompaktnykh elementov trebuyemykh mass pri proportsionalnom izmenenii razmerov kumulyativnykh ustroystv [Obtaining high-velocity compact elements of required mass with proportional change in the size of shaped-charge devices]. Trudy Tomskogo gosudarstvennogo universiteta. Seriya fiziko-matemati-cheskaya — Proceedings of the Tomsk State University. Physics and Mathematics Series, 2010, vol. 276, pp. 193–195 (in Russian).
[26] Fedorov S.V. O realizatsii printsipa implozii v kumulyativnykh zaryadakh s polusfericheskimi oblitsovkami degressivnoi tolshchiny [On implementation of implosion principle in shaped charges with hemispherical liners of the digressive thickness]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 3, pp. 71–92.
[27] Selivanov V.V., Fedorov S.V., Nikolskaya Ya.M., Ladov S.V. Compact element formation for the modeling of the high-velocity impacts of particles onto spacecraft materials and construction elements in earth conditions. Acta Astronautica, 2017, vol. 135, pp. 34−43.
[28] Selivanov V.V., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Research of the explosive formation of a compact element for meteoroids fragments and space debris modeling. Acta Astronautica, 2019, vol. 163, pp. 84–90.
[29] Fedorov S.V., Ladov S.V., Nikolskaya Ya.M., Baskakov V.D., Baburin M.A., Kurepin A.E., Gorbunkov A.A., Pirozerskii A.S. Formirovanie potoka vysokoskorostnykh chastits kumulyativnymi zaryadami s oblitsovkoy polusfera-tsilindr degressivnoy tolshchiny [Formation of a high-velocity particle flow from shaped charges with the hemisphere-cylinder liners of digressive thickness]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2017, vol. 53, no. 4, pp. 122–125.
[30] Baburin M.A., Baskakov V.D., Zarubina O.V., Ladov S.V., Nikolskaya Ya.M., Fedorov S.V. Primenenie profilirovannykh po tolshchine zagotovok dlya upravleniya tolshchinoy stenki shtampyemykh svintsom obolochkovykh detaley [Application of thickness-shaped workpieces to control wall thickness of the lead-formed liner parts]. Tekhnologiya metallov (Metal technology), 2016, no. 11, pp. 2–8.
[31] Geille A. Numerical model of hypervelocity multistage planar disc explosive launchers. International Journal of Impact Engineering, 1995, vol. 17, pp. 353–362.
[32] Silnikov M.V., Guk I.V., Nechunaev A.F., Smirnov N.N. Numerical simulation of hypervelocity impact problem for spacecraft shielding elements. Acta Astronautica, 2018, vol. 150, pp. 56–62.
[33] Fedorov S.V., Veldanov V.A. Primenenie segmentirovannykh udarnikov dlya formirovaniya kaverny v gruntovo-skalnykh pregradakh [Application of segmented projectiles for cavity formation in the soil and rocky targets]. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Bulletin of the Russian Academy of Missile and Artillery Sciences, 2012, no. 1 (71), pp. 43−50 (in Russian).