### Two-parametric fracture criterion for Mode I crack

**Published:**28.07.2022

**Authors:** Pokrovskiy A.M., Egranov M.P.

**Published in issue: **#7(127)/2022

**DOI: **10.18698/2308-6033-2022-7-2191

**Category:** Mechanics | **Chapter:** Mechanics of Deformable Solid Body

The study introduces a two-parametric criterion for maximum tangential stresses adapted to the Mode I crack, which includes T-stresses. The difference of this criterion is that the size of the fracture process zone is written with account for the T-stresses, while the tangential stresses in the fracture process zone are equated to the local strength of the material rather than to the ultimate strength, as it is usually done. The paper gives two-parametric fracture criteria for the case of plane stress and strain states, allowing the strain constraint along the crack front. Within the study, we obtained expressions for the effective stress intensity factor which include the T-stresses — ultimate strength ratio, in addition to the stress intensity factor. This expression allows us to determine the most dangerous point of the crack front and, provided we know the fracture toughness of the material, to estimate the crack resistance of the part with the crack. As an example of using the fracture criterion, we considered a semi-elliptical edge crack in a plate stretched in two directions.

**References**

**[1]**Williams M.L. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 1957, vol. 24 (1), pp. 109–114.

**[2]**Williams J.G., Ewing P.D. Fracture under complex stress — the angled crack problem. Int. J. Fract., 1972, vol. 26 (8), pp. 441–446.

**[3]**Smith D.J., Ayatollahi M.R., Pavier M.J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue & Fracture of Engineering Materials & Structures, 2001, vol. 24 (2), pp. 137–150.

**[4]**Matvienko Yu.G. Maximum average tangential stress criterion for prediction of the crack path. Int. J. Fract., 2012, vol. 176, pp. 113–118.

**[5]**Ayatollahi M.R., Rashidi Moghaddam M., Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theoretical and Applied Fracture Mechanics, 2015, vol. 79, pp. 70–76.

**[6]**Chernyatin S.A., Razumovskiy I.A., Matvienko Yu.G. Problemy mashinostroeniya i nadezhnosti mashin — Journal of Machinery Manufacture and Reliability, 2016, no. 6, pp. 25–34.

**[7]**Seitl S., Knesl Z. Two parameter fracture mechanics: Fatigue crack behavior under mixed mode conditions. Eng. Fract. Mech., 2008, vol. 75, pp. 857–865.

**[8]**Matvienko Yu.G. Dvukhparametricheskaya mekhanika razrusheniya [Two-parameter fracture mechanics]. Moscow, FIZMATLIT Publ., 2020, 208 p.

**[9]**Feodosev V.I. Soprotivlenie materialov [Resistance of materials]. Moscow, BMSTU Publ., 2018, 544 p.

**[10]**Broek D. Elementary engineering fracture mechanics. Springer, 4th ed., 1982, 540 p. [In Russ.: Broek D. Osnovy mekhaniki razrusheniya. Moscow, Vysshaya shkola Publ., 1980, 368 p.].

**[11]**Aliha M.R.M. Ayatollahi M.R., Smith D.J., Pavier M.J. Geometry and size effect on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech., 2010, vol. 77, pp. 2200–2212.

**[12]**Matvienko Yu.G. Modeli i kriterii mekhaniki razrusheniya [Models and criteria of fracture mechanics]. Moscow, FIZMATLIT Publ., 2006, 328 p.

**[13]**Parton V.Z., Morozov E.M. Mekhanika uprugoplasticheskogo razrusheniya. Osnovy mekhaniki razrusheniya [Mechanics of elastoplastic fracture. Fundamentals of fracture mechanics]. Moscow, LKI Publ., 2008, 352 p.

**[14]**Makhutov N.A., Pokrovskiy A.M., Dubovitskii E.I. Problemy mashinostroeniya i nadezhnosti mashin — Journal of Machinery Manufacture and Reliability, 2019, no. 1, pp. 44–52.