Influence of the location of contact spots on thermal contact conductance
Authors: Murashov M.V., Golubtsova E.S.
Published in issue: #3(123)/2022
DOI: 10.18698/2308-6033-2022-3-2159
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
Among the currently widespread fractal and stochastic models of thermal contacts, the location of contact spots formed from the interaction of roughness protrusions is not tracked in any way. Based on the results of the numerical solution of three model two-dimensional problems of thermal contact using simulation in the ANSYS finite element analysis software system, a significant effect of the location of these spots in the nominal contact area on thermal contact conductance was determined. It is shown that thermal contact conductance is not proportional to the number of actual contacts or the fraction of the actual contact area in the nominal area. As a result of the work, conclusions were drawn that even small spots of actual contact significantly change the thermal contact conductivity. Of the existing contact models, this phenomenon can be taken into account by deterministic models, since stochastic and fractal ones do not track the location of spots.
References
[1] Shlykov Yu.P., Ganin E.A., Tsarevsky S.N. Kontaktnoe termicheskoe soprotivlenie [Contact thermal resistance]. Moscow, Energia Publ., 1977, 328 p.
[2] Demkin N.B. Kontaktirovanie sherohovatih poverhnostey [Contacting of the rough surfaces]. Moscow, Nauka Publ., 1970, 228 p.
[3] Murashov M.V., Panin S.D. Modeling of thermal contact conductance. Proceedings of the International Heat Transfer Conference IHTC-14, Washington, DC, USA, 2010, vol. 6, pp. 387–392. DOI: 10.1115/IHTC14-22616
[4] Thompson M.K. A multi-scale iterative approach for finite element modelling of thermal contact resistance. PhD thesis. Massachusetts Institute of Technology, 2007, vol. 100. https://doi.org/10.1115/MNHT2008-52385
[5] Lee S., Jang Y.H., Kim W. Effects of nanosized contact spots on thermal contact resistance. Journal of Applied Physics, 2008, vol. 103. https://doi.org/10.1063/1.2903450
[6] Ciavarella M., Delfine V., Demelio G. A ‘‘re-vitalized’’ Greenwood and Williamson model of elastic contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 2006, no. 54, pp. 2569–2591. https://doi.org/10.1016/j.jmps.2006.05.006
[7] Bahrami M., Yovanovich, M.M., Culham J.R. Thermal contact resistance at low contact pressure: Effect of elastic deformation. International Journal of Heat and Mass Transfer, 2005, no. 48 (16), pp. 3284–3293. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.033
[8] Murashov M.V. Temperature field simulation of gyro unit-platform assembly accounting for thermal expansion and roughness of contact surfaces. Advances in Artificial Systems for Medicine and Education II, 2020, vol. 902, pp. 601–616. https://doi.org/10.1007/978-3-030-12082-5_55
[9] Greenwood J.A. Constriction resistance and the real area of contact. British Journal of Applied Physics, 1966, no. 17 (12), pp. 1621–1632. https://doi.org/10.1088/0508-3443/17/12/310
[10] Archard J.F. Elastic deformation and the laws of friction. Proceedings of the Royal Society. Series A, Mathematical and Physical Sciences, 1957, no. 243 (1233), pp. 190–205. https://doi.org/10.1098/rspa.1957.0214
[11] Jackson R.L., Streator J.L. A multi-scale model for contact between rough surfaces. Wear, 2006, no. 261, pp. 1337–1347. https://doi.org/10.1016/j.wear.2006.03.015
[12] Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, no. 295, pp. 300–319. https://doi.org/10.1098/rspa.1966.0242
[13] Zhang X., Cong P., Fujiwara S., Fujii M. A new method for numerical simulation of thermal contact resistance in cylindrical coordinates. International Journal of Heat and Mass Transfer, 2004, no. 47 (5), pp. 1091–1098. https://doi.org/10.1016/j.ijheatmasstransfer.2003.04.001
[14] Bush A.W., Gibson R.D., Thomas T.R. The elastic contact of a rough surface. Wear, 1975, 35, pp. 87–111. https://doi.org/10.1016/0043-1648(75)90145-3
[15] Greenwood J.A. A note on Nayak’s third paper. Wear, 2007, no. 262, pp. 225–227.
[16] Majumdar A., Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. Journal of Tribology, 1991, no. 113 (1), pp. 1–11. https://doi.org/10.1115/1.2920588
[17] Borodich F.M., Mosolov A.B. Fractal contact of solids. Journal of Technical Physics, 1991, vol. 61, pp. 50–54.
[18] Murashov M.V., Panin S.D. Modelirovanie termicheskogo contactnogo soprotivleniya [Modelling of thermal contact resistance]. Trudi pyatoy Rossiyskoy nacionalnoy konferencyy po teploobmenu, Vol. 7. Moskva, 25-29 oktyabrya 2010 [Proceedings of The Fifth Russian national conference on heat transfer, Moscow, 25–29 October 2010]. Moscow, Izdatelskiy dom MEI Publ., 2010, pp. 142–145.
[19] Murashov M.V., Panin S.D. Numerical modelling of contact heat transfer problem with work hardened rough surfaces. International Journal of Heat and Mass Transfer, 2015, no. 90, pp. 72–80. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.024
[20] Thompson M.K., Thompson J.M. Considerations for the incorporation of measured surfaces in finite element models. Scanning, 2010, no. 32 (4), pp. 183–198.
[21] Murashov M.V., Panin S.D. Numerical solution features for contact deformation problem of rough bodies in ANSYS. Vestnik Moskovskogo Gos. Tekh. Univ. im. N.E. Baumana, Seriya Priborostroenie — Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng. Series, 2016, no. 1, pp. 129–142. DOI: 10.18698/0236-3933-2016-1-129-142
[22] Murashov M.V. Selection of parameters for computational algorithms while solving the problem of rough bodies contact with ANSYS. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Seriya Estestv. Nauki — Herald of the Bauman Moscow State Tech. Univ., Nat. Sciences Series, 2016, no. 1, pp. 111–121. DOI: 10.18698/1812-3368-2016-1-111-121
[23] Murashov M.V., Panin S.D. Features of a Finite Element Solution to Calculating Real Contact Area of Rough Bodies. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Seriya Priborostroenie — Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng. Series, 2016, no. 4, pp. 19–32. DOI: 10.18698/0236-3933-2016-4-19-32
[24] Cahill D.G., Ford W., Goodson K., Mahan G.D. Nanoscale thermal transport. Journal of Applied Physics, 2003, no. 93 (2), pp. 793–818. https://doi.org/10.1063/1.1524305