Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Specific features of mathematical modeling of ceramic plates destruction under the influence of high-speed impactors

Published: 10.12.2021

Authors: Petukov A.V., Grin K.A.

Published in issue: #12(120)/2021

DOI: 10.18698/2308-6033-2021-12-2133

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The paper examines the issues of mathematical modeling of ceramic armor panels’ penetration by high-speed cylindrical impactors. By means of the LS-DYNA software package, a corresponding numerical simulation methodology was developed by combining a chosen method, adjusted computational mesh cells size, appropriate Courant number, and values of linear and quadratic pseudo-viscosity coefficients. The results compared with experimental data show that Lagrangian and Eulerian numerical methods, unlike the SPH method (Smoothed Particle Hydrodynamics), improperly reproduce the process of the shock wave disintegration into an elastic precursor and a plastic wave. In addition, the common size of conical fractions dislodging from the ceramic plates was determined and the influence of the scale effect on the ceramics damage patterns was shown: an increase in the absolute value of the plate thickness leads to the increase in the dislodging cone semi-vertex angle.

[1] Sudnik L.V., Galinovskiy A.L., Kolpakov V.I., Mulyar S.G., Abashin M.I., Provatorov A.S. Nauka i obrazovanie (Science and education), 2014, no. 3, pp. 15–23. DOI: 10.7463/0314.0701307
[2] Galinovskiy A.L., Kolpakov V.I., Mulyar S.G. Nauka i obrazovanie (Science and education), 2012, no. 3, pp. 1–13. Available at: (accessed November 11, 2021).
[3] Kobylkin I.F., Gorbatenko A.A. Vestnik MGTU im. N.E. Baumana, Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2018, no. 2 (119), pp. 17–30. DOI: 10.18698/0236-3941-2018-2-17-30
[4] Slutsker A.I., Sinani A.B., Betekhtin V.I., Kadomtsev A.G., Ordanyan S.S. Zhurnal tekhnicheskoy fiziki — Technical Physics, 2008, vol. 78 (12), pp. 59−64.
[5] Ulyanov V.L., Botaki A.A., Pozdeeva E.V. Izvestiya Tomskogo politekhnicheskogo universiteta — Bulletin of the Tomsk Polytechnic University, 2006, vol. 309, no. 2, pp. 27–31.
[6] Grinevich A.V., Lavrov A.V. Trudy VIAM — Proceedings of VIAM, 2018, no. 3 (63), pp. 95–102. DOI: 10.18577/2307-6046-2018-0-3-95-102
[7] Aniskovich V.A., Ermolenko A.F., Kulkov A.A. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2018, no. 4 (53), pp. 45–54. DOI: 10.18577/2071-9140-2018-0-4-45-54
[8] Ovsienko A.I., Rumyantsev V.I., Bespalov I.A., Silnikov N.M. Voprosy oboronnoy tekhniki. Seriya 16. Tekhnicheskie sredstva protivodeystviya terrorizmu — Military Engineering. Issue 16, Counter-terrorism technical devices. 2015, no. 7–8 (85–86), pp. 95–101.
[9] Bespalov I.A., Galinovskiy A.L., Mulyar S.G. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii — Fundamental and Applied Problems of Technics and technology, 2011, no. 4–3 (288), pp. 139–144.
[10] Bespalov I.A., Grigoryan V.A., Kobylkin I.F. Voprosy oboronnoy tekhniki. Seriya 16. Tekhnicheskie sredstva protivodeystviya terrorizmu — Military Engineering. Issue 16, Counter-terrorism technical devices. 2011, no. 3–4, pp. 84–88.
[11] LS-DYNA Theory Manual. Livermore Software Technology Corporation, r:11261, 2019. Available at: (accessed November 1, 2021).
[12] Grady D.E., Moody R.L. Shock compression profiles in ceramics. Sandia National Laboratories Reports, 1996, no. SAND96-0551, pp. 53–63. Available at: (accessed November 1, 2021).
[13] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Prikladnaya mekhanika sploshnykh sred. T. 3 Chislennye metody v zadachakh fiziki bystroprotekayuschikh protsessov [Applied Continuum Mechanics. Vol. 3 Numerical methods in problems of physics of fast processes]. Moscow, BMSTU Publ., 2006, 521 p.
[14] Steinberg D. Equation of State and Strength Properties of Selected Materials. Lawrence Livermore National Laboratory, 1991, pp. 1–11.
[15] Selected Hugoniots. Los Alamos Scientific Laboratory, no. LA-4167-MS, 1969.
[16] Dattelbaum D.M., Coe J.D., Kiyanda Ch.B., Gustavsen R.L., Patterson B.M. Reactive, anomalous compression in shocked polyurethane foams. Journal of Applied Physics, 2014, vol. 115 (17), pp. 1749098–174908-12. DOI: 10.1063/1.4875478
[17] Saint-Michel F., Chazeau L., Cavaillé J.-Y., Chabert E. Mechanical properties of high density polyurethane foams: I. Effect of the density. Composites Science and Technology, 2006, no. 66, pp. 2700–2708. DOI: 10.1016/j.compscitech.2006.03.009
[18] Patel P.S.D., Shepherd D.E.T., Hukins D.W.L. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskeletal Disorders, 2006, vol. 9 (137). DOI: 10.1186/1471-2474-9-137
[19] Marsh S.P., ed. Lasl Shock Hugoniot Data. University of California Press, 1980, pp. 212–474.
[20] Johnson G.R., Holmquist T.J. Response of boron carbide subjected to large strains, high strain rates, and high pressures. Journal of Applied Physics, 1999, vol. 85 (12), pp. 8060–8073. DOI: 10.1063/1.370643
[21] Orlenko L.P., ed. Fizika vzryva [Explosion physics]. Vol. 1. Moscow, FIZMATLIT, 2004, 831 p.
[22] Grigoryan V.A., Kobylkin I.F., Marinin V.M., Chistyakov E.N. Materialy i zaschitnye struktury dlya lokalnogo i individualnogo bronirovaniya [Materials and protective structures for local and individual booking]. Moscow, RadioSoft Publ., 2008, 406 p.
[23] Kobylkin I.F. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2017, vol. 53, no. 1, pp. 123–128. DOI: 10.15372/FGV20170115