Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Manifestations of instability during the collapse of metal liners of shaped charges and in related jet flows of dynamically deformed profiled bodies

Published: 20.07.2021

Authors: Babkin A.V., Novoseltsev А.S., Ladov S.V.

Published in issue: #7(115)/2021

DOI: 10.18698/2308-6033-2021-7-2091

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The paper briefly analyzes a number of published works devoted to cumulative explosion under conditions of the possible development of surface instability of the collapsing liner of a shaped charge. Most studies stated that surface instability was initially initiated by harmonic surface disturbances or disturbances in the parameters of a given load simulating an explosive one. The instability manifested itself in the form of the development of surface disturbances over time; the absence or limited growth was considered as the preservation of the stability of the deformable shell. In addition to the influence of instability on cumulative processes, related jet flows were also investigated. This is the so-called explosive dispersion (dusting), which occurs both under the influence of the interference of shock waves and unloading waves, and in the presence of initial disturbances of the surface shape. The analysis is built within the framework of the phenomenological approach — both the main results of the experiments and their mathematical descriptions were considered, which in most cases were carried out from the positions established in the mechanics of continuous media, as well as with the help of numerical modeling. Based on the results, conclusions were formulated about the reasons and forms of manifestation of surface instability of collapsing metal liners of shaped charges, the nature of the development and parameters of functioning of such charges, as well as about the features and laws of this process.


References
[1] Elliot L.A .Calculation of the Growth of Interface Instabilities by a Lagrangian Mesh Method. 4th Int. Symp. on Detonation. Washington, 1967, pp. 316–320.
[2] Babkin A.V., Bondarenko P.A., Fedorov S.V, et al. Oboronnaya tekhnika (Defense technology), 2000, no. 1–2, pp. 35–40.
[3] Babkin A.V., Bondarenko P.A., Ladov S.V., Fedorov S.V. Ogranicheniya vozmozhnostey povysheniya probitiya kumulyativnogo zaryada pri impulsnom teplovom vozdeystvii na ego oblitsovku. Ekstremalnye sostoyaniya veschestva. Detonatsiya. Udarnye volny [Limitations of the possibilities of increasing the penetration of the shaped charge with a pulsed thermal effect on its liner. Extreme states of matter. Detonation. Shock waves]. Trudy Mezhdunarodnoy konferentsii III Kharitonovskie tematicheskie nauchnye chteniya [Proceedings of the International Conference III Kharitonov Thematic Scientific Readings]. Sarov, VNIIEF Publ., 2002, pp. 257–263.
[4] Baburin M.A., Baskakov V.D., Zarubina O.M., et al. Tekhnologiya metallov — Russian Metallurgy (Metally), 2016, no. 11, pp. 7–8.
[5] Kolpakov V.I., Pletnev S.L. Vliyanie predvaritelnogo nagreva oblitsovki na effektivnost deystviya kumulyativnykh zaryadov [Influence of liner preheating on the efficiency of shaped charges.]. Tezisy dokladov IV Mezhdunarodnoy konferentsii «Lavrentevskie chteniya po matematike, mekhanike i fizike» [Abstracts of the IV International Conference "Lavrentyev Readings on Mathematics, Mechanics and Physics"]. Novosibirsk, Institute of Geography, RAS Publ., 1995, p. 125.
[6] Korenkov V.V., Obukhov A.S., Smelikov V.G. Dvoynye tekhnologii (Dual technologies), 1999, no. 4, pp. 53–54.
[7] Ivanov A.G., Lavrovskiy Yu.D., Ogorodnikov V.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1992, vol. 33, no. 5, pp. 116–119.
[8] Ivanov A.G., Ogorodnikov V.A., Karpenko G.Ya., et al. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1994, vol. 35, no. 4, pp. 163–167.
[9] Drennov O.B., Mikhaylov A.L., Ogorodnikov V.A. Prikladnaya mekhanika I tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 2, pp. 171–176.
[10] Charakhchyan A.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 1, pp. 28–37.
[11] Golubyatnikov A.N., Zonenko S.I., Cherny G.G. Uspekhi mekhaniki (Achievements in mechanics), 2005, vol. 3, no. 1, pp. 31–31.
[12] Orlenko L.P. Fizika vzryva [Physics of explosion]. In 2 vols., vol. 2. 3rd ed., rev. Moscow, FIZMATLIT Publ., 2004, 656 p.
[13] Pay V.V., Titov V.M., Lukyanov Ya.L., Plastinin A.V. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2019, vol. 54, no. 4, pp. 69–73.
[14] Zeldovich V.I., Frolova N.Yu., Kheyfets A.E., Shorokhov E.V. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2019, vol. 55, no. 4, pp. 92–102.
[15] Zeldovich V.I., Frolova N.Yu., Kheyfets A.E., Shorokhov E.V. Fizika metallov i metallovedenie — Physics of Metals and Metallography, 2015, no. 3, pp. 300–308.
[16] Zeldovich V.I., Frolova N.Yu., Kheyfets A.E., Shorokhov E.V. Fizika metallov i metallovedenie — Physics of Metals and Metallography, 2017, no. 7, pp. 715–724.
[17] Zeldovich V.I., Frolova N.Yu., Kheyfets A.E., Shorokhov E.V.Fizika metallov i metallovedenie — Physics of Metals and Metallography, 2019, no. 4, pp. 381–388.
[18] Selivanov V.V., Fedorov S.V., Nikolskaya Y.M., Ladov S.V. Compact element formation for modeling of the high-velocity impacts of particles onto spacecraft materials and construction elements in earth condition. Acta Astronautica, 2017, vol. 135, no. 10, pp. 34–43.
[19] Ogorodnikov V.A., Mikhaylov A.L., Romanov A.V., et al. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2007, vol. 48, no. 1, pp. 16–23.
[20] Qiang Z., Graham M.J. A numerical study of Richtmyer–Meshkov instability driven by cylindrical shocks. Physics of Fluids, 1998, vol. 974, no. 10. DOI: 10.1063/1.869624
[21] Lopez Ortega A., Lombardini M., Barton P., et. al. Richtmyer–Meshkov instability for elastic–plastic solids in converging geometries. Journal of Mechanics and Physics of Solids, 2015, vol. 76, pp. 291–324.
[22] Lopez Ortega A., Lombardini M., Pullin D., Meiron D. Numerical simulations of the Richtmyer–Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phisical Review, 2014.
[23] Charakhchyan A.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 3, pp. 9–13.
[24] Ogorodnikov V.A., Ivanov A.G., Mikhaylov A.L., et al. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 1998, vol. 34, no. 3, pp. 103–107.
[25] Ogorodnikov V.A., Ivanov A.G., Kryukov N.I. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 1999, vol. 35, no. 5, pp. 122–126.
[26] Ogorodnikov V.A., Romanov F.V., Erunov S.V., et al. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2008, vol. 44, no. 6, pp. 107–113.
[27] NevmerzhitskiiyN.V., Raevskiy V.A., Sotskov E.A., et al. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2018, vol. 54, no. 5, pp. 82–89.
[28] Chudakov E.F., Fedorov A.V., Finyushin S.A., et al. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2018, vol. 54, no. 5, pp. 90–95.
[29] Ten K.A., Pruell E.R., Kashkarov A.O., et al. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2018, vol. 54, no. 5, pp. 103–111.
[30] Vlasov A.N., Zhuravlev A.V., Pashentsev V.A., et al. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2019, vol. 55, no. 4, pp. 42–60.