Analysis of numerical calculation of elastic-plastic shell collapse with growing instability
Authors: Novoseltsev А.S., Babkin A.V.
Published in issue: #3(99)/2020
DOI: 10.18698/2308-6033-2020-3-1962
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
The paper presents research of the collapse of the elastic-plastic shell under external surface forces simulating explosive loading by mathematical simulation using numerical methods. The problem was solved in two-dimensional curved geometries as a non-stationary problem of continuum mechanics. We applied the Wilkins Lagrangian method. The instability of the shell was initiated by harmonic surface perturbations on the outer or inner surfaces. The characteristics of the explosive loading were also changed: the maximum pressure, pressure fall time constant, and the time of application of the explosive load. The size of instability was determined by the deviation of the disturbed surface or the boundary of the jet-forming layer from the cylindrical one. We have established the parameters of the shell and the impulse loading on the shell, which affect most strongly the growth of instability during collapse.
References
[1] Selivanov V.V., ed. Boepripasi [Ammunition]. In 2 vols. Vol. 1. Moscow, BMSTU Publ., 2019, 506 p.
[2] Orlenko L.P., ed. Fizika vzryva [Physics of Explosion.]. In 2 vols. Vol. 2. Moscow, Phyzmatlit Publ., 2002, 656 p.
[3] Pai V.V., Titov V.M., Lukyanov Y.L., Plastinin A.V. Combustion, Explosion, and Shock Waves, 2019, no. 4, pp. 69–73.
[4] Zeldovich V.I., Frolova N.Yu., Heifets A.E., Chomskaya I.V., Degtyarev A.A., Shorokhov E.V., et al. Combustion, Explosion, and Shock Waves, 2019, no. 4, pp. 92–102.
[5] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Chislennyye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Numerical methods in problems of physics of fast-flowing processes]. In 3 vols. Vol. 3. Moscow, BMSTU Publ., 2006, 520 p.
[6] Kolpakov V.I., Ladov S.V., Rubtsov A.A. Matematicheskoye modelirovaniye funktsionirovaniya kumulyativnykh zaryadov [Mathematical modeling of the functioning of sharped charges]. Moscow, BMSTU Publ., 2006, 36 p.
[7] Novoseltsev A.S., Babkin A.V. Mathematical model of the elastoplastic shell collapse with regard to the possible instability process development. Engineering Journal: Science and Innovation, 2019, iss. 5. http://dx.doi.org/10.18698/2308-6033-2019-5-1874
[8] Babkin A.V., Bondarenko P.A., Fedorov S.V., et al. Ogranicheniya vozmozhnostey povysheniya probitiya kumulyativnogo zaryada pri impulsnom teplovom vozdeystvii na ego obshivku [Limitations of the possibilities for increasing the penetration of a shaped charge under pulsed heating its liner]. In: Trudy III Mezhdunarodnoy konferentsii. Kharitonovskie tematicheskie nauchnye chteniya. “Ekstremalnye sostoyaniya veshchestva. Detonaysiya. Udarnye volny” [Proceedings of the III International conference. Kharitonov’s thematic scientific readings. “Extreme states of the substance. Detonation. Shock waves”]. Sarov, Vserossiyskiy nauchno-issledovatelskiy institute eksperimentalnoy fiziki Publ., 2002, pp. 257–263.
[9] Elliot L.A. Calculation of the growth of interface instabilities by a Lagrangian Mesh Method. In: Proceedings of the 4th International Symposium on Detonation. White Oak, USA, 1965. Washington, 1967, pp. 316–320.
[10] Barnes J.F., Blewitt P.J., McQueen R.G., Meyer K.A., Venable D., Taylor D.H., London R.K., et al. Journal of Applied Physics, 1974, vol. 45, no. 4, pp. 727–734.
[11] Barnes J.F., Janney D.R., London R.R., et al. Journal of Applied Physics, 1980, vol. 51, no. 9, pp. 78–79.
[12] Drennov O.B., Michaylov A.L., Ogorodnikov V.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 4, pp. 171–176.
[13] Charakhchyan А.А. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 3, pp. 10–13.
[14] Charakhchyan А.А. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 1, pp. 28–37.
[15] Marinin V.M., Babkin A.V., Kolpakov V.I. Oboronnaya tekhnika — Defence Technology, 1995, no. 4, pp. 34–39.