Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Specifics of generating explosively formed projectiles of variable shape from metal liners

Published: 10.12.2019

Authors: Kruglov P.V., Kolpakov V.I., Bolotina I.A.

Published in issue: #12(96)/2019

DOI: 10.18698/2308-6033-2019-12-1937

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The study proposes to use charges forming high-speed elongated elements (HSEE) with a variable shape for ground-based simulation of the penetration of particles and elements into the spacecraft's hull. During the operation of such a charge, an explosive throws a metal lining over a distance of several hundred charge diameters. The metal segment lining is deformed during the throwing process and takes the form of an elongated element. In calculations we used steel linings with a degressive and progressive profile whose outer and inner surfaces are formed by spherical surfaces, as well as by a combination of spherical and conical surfaces. The paper shows the results of a numerical analysis which determines the effect of the geometric and physico-mechanical parameters of segmented cumulative linings on the efficiency of the charges forming high-speed elongated elements. The efficiency of the charges was determined by the characteristics of the formed element, i.e. elongation, degree of fullness and the diameter of the horizontal stabilizer. Furthermore, we established the dependences which describe the effect of the lining material dynamic yield point and the radius of transition of the spherical surface to the conical surface on the elongation of the element and the diameter of the horizontal stabilizer. We also showed the possible contradictory effect of changing the radius of transition of the spherical surface of the lining into the conical surface on the aerodynamic stability parameters of the high-speed elongated element.


References
[1] Christiansen E.L. Handbook for Designing MMOD Protection. NASA, Houston, Texas (USA), 2009, 135 p.
[2] Poniaeva S.A., Kurakina R.O., Reznikova B.I., Rozova S.I., Zhukova B.G., Chernyshov M.V. Laboratory modelling of an active space experiment using railgun as a launch device. Acta Astronautica, 2017, vol. 135, pp. 63–68.
[3] Poniaeva S.A., Kurakina R.O., Sedova A.I., Bobasheva S.V., Zhukova B.G., Nechunaev A.F. Hypervelocity impact of mm-size plastic projectile on thin aluminum plate. Acta Astronautica, 2017, vol. 135, pp. 26–33.
[4] Rumiantsev B.V., Mikhaylin A.I. Phase transition effect on efficiency of screen protection against elongated hyper-velocity projectiles. Acta Astronautica, 2017, vol. 135, pp. 15–20.
[5] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. N.Y., John Wiley and Sons, 1989, 298 p.
[6] Orlenko L.P., ed. Fizika vzryva [Physics of Explosion]. In 2 vols. Vol. 2. 3rd edition. Moscow, FIZMATLIT Publ., 2004, 656 p.
[7] Selivanov V.V., ed. Boepripasy [Munitions]. In 2 vols. Vol. 1. Moscow, BMSTU Publ., 2016, 506 p.
[8] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Numerical methods in problems of physics of high-speed processes]. 2nd ed., revised. Moscow, BMSTU Publ., 2006, 518 p.
[9] Kolpakov V.I., Ladov S.V., Rubtsov A.A. Matematicheskoe modelirovanie funktsionirovaniya kumulyativnykh zaryadov [Mathematical simulation of shaped charge operation]. Moscow, BMSTU Publ., 1998, 68 p.
[10] Fedorov S.V., Bayanova Ya.M., Ladov S.V. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2015, vol. 51, no. 1, pp. 150–164.
[11] Selivanov V.V., Fedorov S.V., Nikolskaya Ya.M., Ladov S.V. Acta Astronautica, 2017, no. 135, pp. 34–43.
[12] Selivanov V.V., Fedorov S.V., Nikolskaya Ya.M., Ladov S.V. Acta Astronautica, 2019, no. 163, pp. 84–90.
[13] Kruglov P.V., Kolpakov V.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 12. http://dx.doi.org/10.18698/2308-6033-2017-12-1714
[14] Kruglov P.V., Kolpakov V.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. http://dx.doi.org/10.18698/2308-6033-2018-7-1782
[15] Cardoso D., Teixeira-Dias F. International Journal of Impact Engineering, 2016, no. 93, pp. 116–127. DOI: 10.1016/j.ijimpeng.2016.02.014
[16] Weimann K. Propellants, explosives, pyrotechnics, 1993, vol. 18 (5), pp. 294–298.
[17] Hussain G., Hameed A., Hetherington J.G., Barton P.C., Malik A.Q. J. of Energetic Materials, 2013, no. 31, pp. 143–155. DOI: 10.1080/07370652.2011.606453
[18] Hussain G., Hameed A., Hetherington J.G., Malik A.Q., Sanaullah K. Journal of Applied Mechanics and Technical Physics, 2013, no. 54 (1), pp. 10–20.
[19] Pappu S., Murr L.E. Journal of Materials Science, 2002, vol. 37 (2), pp. 233–248.
[20] Wu J., Liu J., Du Y. International Journal of Impact Engineering, 2007, vol. 34 (7), pp. 1147–1162.
[21] Rolc S., Buchar J., Akstein Z. Computer simulation of explosively formed projectiles (EFP). Proc. of the 23th Int. Symp. on Ballistics, 2007, pp. 185–192.
[22] Borkowski J., Wilk Z., Koslik P., Szymanczyk L., Zygmunt B. International Journal of Impact Engineering, 2018, vol. 118, pp. 91–97.
[23] Liu J., Gu W., Lu M., Xu H., Wu S. Defense Technology, 2014, no. 10, pp. 119–123. DOI:10.1016/j.dt.2014.05.002
[24] Bender D., Chhouk B., Fong R., Rice B., Volkmann E. Explosively formed penetrators (EFP) with canted fins. 19th International Symposium on Ballistics, Interlaken, Switzerland, 2001, pp. 755–761.
[25] Li R., Li W.B., Wang X.M. Shock Waves, 2018, vol. 28 (2), pp. 191–204.
[26] Kruglov P.V., Kolpakov V.I., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 11. http://dx.doi.org/10.18968/2308-6033-2019-11-1917
[27] Gelin D.V., Lysov D.A., Markov V.A., Sotskiy M.Yu., Selivanov V.V., Gelin N.D., Sotskaya M.M. Inzhenernyy zhurnal: nauka i innovatsii —Engineering Journal: Science and Innovation, 2018, iss. 3. http://dx.doi.org/10.18698/2308-6033-2018-3-1747
[28] Klimachkov S.I., Ohitin V.N. Inzhenernyy zhurnal: nauka i innovatsii —Engineering Journal: Science and Innovation, 2016, iss. 8. DOI: 10.18698/2308-6033-2016-8-1526
[29] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 9. DOI: 10.18698/2308-6033-2017-9-1674
[30] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 8. DOI: 10.18698/2308-6033-2018-8-1787
[31] Kruglov P.V., Sgibnev A.V. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2012, no. 6. DOI: 10.7463/0614.0714287
[32] Kruglov P.V., Sgibnev A.V. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2012, no. 3, pp. 140–147.
[33] Kruglov P.V., Tarasov V.A. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2012, no. 1. Available at: http://technomag.bmstu.ru/doc/260312.html (accessed June 20, 2018).
[34] Kruglov P.V., Tarasov V.A., Bolotina I.A. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2012, no. 2. Available at: http://technomag.bmstu.ru/doc/339658.html (accessed June 20, 2018).
[35] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 5. http://dx.doi.org/10.18698/2308-6033-2016-05-1494