Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Specifics of generating explosively formed projectiles of variable shape from metal liners

Published: 18.11.2019

Authors: Kruglov P.V., Kolpakov V.I., Bolotina I.A.

Published in issue: #11(95)/2019

DOI: 10.18698/2308-6033-2019-11-1929

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

We propose using charges generating explosively formed projectiles of variable shape to remotely demolish structurally unsound concrete or brick walls of buildings and other structures. The paper considers the charges required, their design and operation. The operation of such a charge involves the explosive material accelerating a metal liner, covering a distance of up to several hundred charge diameters. The metal liner deforms while moving and assumes a compact shape. We used variable thickness copper liners, the external and internal surfaces of which are formed by a combination of spherical surfaces. A planar shock wave generator featuring a variable detonation wave slope is considered as the initiation system for the charge. We present the results of numerically simulating our explosive charge operation in order to determine how charge parameters affect performance. We estimated charge performance via two projectile parameters: its shape and velocity. The study also evaluated the effect of the planar shock wave generator slope on the projectile shape. We obtained projectile velocity and aspect ratio as functions of the slope of the converging detonation wave. We determined that decreasing the slope of the converging detonation wave front leads to an increase in the aspect ratio and velocity of the explosively formed projectile.


References
[1] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. New York, John Wiley and Sons Publ., 1989, 298 p.
[2] Andreev S.G., Babkin A.V., Baum F.A., et al. Fizika vzryva [Physics of Explosion]. Orlenko L.P., ed. 3rd edition. In 2 vols. Vol. 2. Moscow, FIZMATLIT Publ., 2004, 656 p.
[3] Babkin A.V., Veldanov V.A., Gryaznov E.F., et al. Boepripasy [Munitions]. In 2 vols. Vol. 1. Selivanov V.V., ed. Moscow, BMSTU Publ., 2016, 506 p.
[4] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Numerical methods in problems of physics of high-speed processes]. 2nd ed., revised. Moscow, BMSTU Publ., 2006, 518 p.
[5] Kolpakov V.I., Ladov S.V., Rubtsov A.A. Matematicheskoe modelirovanie funktsionirovaniya kumulyativnykh zaryadov [Mathematical simulation of shaped charge operation]. Moscow, BMSTU Publ., 1998.
[6] Fedorov S.V., Bayanova Ya.M., Ladov S.V. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2015, vol. 51, no. 1, pp. 150–164.
[7] Selivanov V.V., Fedorov S.V., Nikolskaya Ya.M., Ladov S.V. Acta Astronautica, 2017, no. 135, pp. 34–43.
[8] Selivanov V.V., Fedorov S.V., Nikolskaya Ya.M., Ladov S.V. Acta Astronautica, 2019, no. 163, pp. 84–90.
[9] Kruglov P.V., Kolpakov V.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 12. http://dx.doi.org/10.18698/2308-6033-2017-12-1714
[10] Kruglov P.V., Kolpakov V.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. http://dx.doi.org/10.18698/2308-6033-2018-7-1782
[11] Weimann K. Propellants, explosives, pyrotechnics, 1993, no. 18 (5), pp. 294–298.
[12] Hussain G., Hameed A., Hetherington J.G., Barton P.C., Malik A.Q. J. of Energetic Materials, 2013, no. 31, pp. 143–155. DOI: 10.1080/07370652.2011.606453
[13] Pappu S., Murr L.E. Journal of Materials Science, 2002, no. 37 (2), pp. 233–248.
[14] Cardoso D., Teixeira-Dias F. International Journal of Impact Engineering, 2016, no. 93, pp. 116–127.
[15] Wu J., Liu J., Du Y. International Journal of Impact Engineering, 2007, no. 34 (7), pp. 1147–1162.
[16] Rolc S., Buchar J., Akstein Z. Computer simulation of explosively formed projectiles (EFP). Proc. of the 23th Int. Symp. on Ballistics, 2007, pp. 185–192.
[17] Hussain G., Hameed A., Hetherington J.G., Barton P.C., Malik A.Q. Journal of Energetic Materials, 2013, no. 31 (2), pp. 143–155.
[18] Hussain G., Hameed A., Hetherington J.G., Malik A.Q., Sanaullah K. Journal of Applied Mechanics and Technical Physics, 2013, no. 54 (1), pp. 10–20.
[19] Borkowski J., Wilk Z., Koslik P., Szymanczyk L., Zygmunt B. International Journal of Impact Engineering, 2018, no. 118, pp. 91–97.
[20] Liu J., Gu W., Lu M., Xu H., Wu S. Defense Technology, 2014, no. 10, pp. 119–123. DOI:10.1016/j.dt.2014.05.002
[21] Bender D., Chhouk B., Fong R., Rice B., Volkmann E. Explosively formed penetrators (EFP) with canted fins. 19th Int. Symp. on Ballistics. Interlaken, Switzerland, 2001, pp. 755–761.
[22] Li W., Wang X., Li W. International Journal of Impact Engineering, 2010, no. 37 (4), pp. 414–424.
[23] Li R., Li W.B., Wang X.M. Shock Waves, 2018, no. 28 (2), pp. 191–204.
[24] Pappu S., Murr L.E. Materials Science and Engineering, 2000, no. 284 (1–2), pp. 148–157.
[25] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 9. http://dx.doi.org/10.18968/2308-6033-2017-9-1674
[26] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii —Engineering Journal: Science and Innovation, 2018, iss. 8. http://dx.doi.org/10.18698/2308-6033-2018-8-1787
[27] Kruglov P.V., Sgibnev A.V. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2014, no. 6. DOI: 10.7463/0614.0714287
[28] Hu F., Wu H., Fang Q., Liu J.C., Liang B., Kong X.Z. International Journal of Impact Engineering, 2017, no. 109, pp. 150–166.
[29] Bookout L., Mulligan P., Baird J. Procedia Engineering, 2013, no. 58, pp. 560–569.
[30] Zhu C.S., Huang Z.X., Zu X.D., Xiao Q.Q. Propellants, Explosives, Pyrotechnics, 2014, no. 39 (6), pp. 909–915.
[31] Hu F., Wu H., Fang Q., Liu J.C. International Journal of Impact Engineering, 2018, no. 122, pp. 251–264.
[32] Gelin D.V., Lysov D.A., Markov V.A., Sotskiy M.Yu., Selivanov V.V., Gelin N.D., Sotskaya M.M. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 3. http://dx.doi.org/10.18698/2308-6033-2018-3-1747
[33] Kruglov P.V., Sgibnev A.V. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2012, no. 3, pp. 140–147.
[34] Kruglov P.V., Tarasov V.A. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2012, no. 1. Available at: http://technomag.bmstu.ru/doc/260312.html (accessed June 20, 2018).
[35] Kruglov P.V., Tarasov V.A., Bolotina I.A. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2012, no. 2. Available at: http://technomag.bmstu.ru/doc/339658.html (accessed June 20, 2018).
[36] Kruglov P.V., Bolotina I.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 5. http://dx.doi.org/10.18698/2308-6033-2016-05-1494