Axisymmetric barrier deformation due to underwater explosion of a cumulative charge
Authors: Babkin A.V., Ladov S.V., Orlenko L.P.
Published in issue: #2(86)/2019
DOI: 10.18698/2308-6033-2019-2-1853
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
The purpose of the study was to numerically simulate the deformation of a flat, round, externally clamped plate occurring due to an underwater explosion of a cumulative charge. The configuration of the deformed plate was compared for two cases: a solid plate and a plate with a central hole resulted from the explosive jet. The paper introduces an approximate experimental method for determining the limiting deflection of the barrier. The method is supposed to be used to estimate the limiting distance from the center of the explosive mass to the barrier, which corresponds to the limiting deflection of the barrier, the deflection leading to its destruction by the cracking mechanism. The paper demonstrates the results of the calculations of the configuration of both solid and with a central hole deformed plate, and experimental data for various types of specified loads, thicknesses and materials of the barrier. The dependences of the relative bending energy on the relative thickness of the barrier and the relative deflection on the deformation energy of the barrier are obtained
References
[1] Belousov I., ed. Vooruzhenie i voenno-morskaya tekhnika Rossii [Armament and naval equipment of Russia]. Moscow, Voenny parad Publ., 2003, 208 p.
[2] Selivanov V.V., ed. Boepripasy. V 2 tom. Tom 1 [Ammunition. In 2 vols. Vol. 1]. Moscow, BMSTU Publ., 2016, 506 p.
[3] Odintsov V.A., Ladov S.V., Levin D.P. Oruzhie i sistemy vooruzheniya [Weapons and armament systems]. Moscow, BMSTU Publ., 2018, 226 p.
[4] Ozeretskovskiy O.I. Deystvie vzryva na podvodnye ob’’ekty [Explosion effect on underwater objects]. Shakhidzhanov E.S., ed. Moscow, FGUP CNIIHM Publ., 2007, 262 p.
[5] Ladov S.V., Babkin A.V., Kolpakov V.I., Fedorov S.V., Ikoev L.N., Pronozov A.G. Oboronnaya tekhnika (Defense Technology), 2005, no. 4–5, pp. 35–43.
[6] Ladov S.V. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk (Proceedings of the Russian Academy of Missile and Ammunition Sciences), 2016, no. 1 (91), pp. 73–79.
[7] Ladov S.V. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk (Proceedings of the Russian Academy of Missile and Ammunition Sciences), 2016, no. 2 (92), pp. 37–42.
[8] Shvetsov G.A., Matrosov A.D., Fedorov S.V., Babkin A.V., Ladov S.V. Effect of external magnetic fields on shaped-charge operation. International Journal of Impact Engineering, 2011, vol. 38, iss. 6, pp. 521–526.
[9] Ladov S.V., Babkin A.V., Vasyukov V.I., Fedorov S.V. Oboronnaya tekhnika (Defense Technology), 2002, no. 1-2, pp. 65–71.
[10] Babkin A.V., Ladov S.V., Fedorov S.V. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2002, no. 1 (8), pp. 73–84.
[11] Ladov S.V. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk (Proceedings of the Russian Academy of Missile and Ammunition Sciences), 2015, no. 1 (85), pp. 54–62.
[12] Stanyukovich K.P., ed. Fizika vzryva [Physics of explosion]. Moscow, Glavn. red. fiziko-mat. lit. izd. Nauka Publ., 1975, 704 p.
[13] Orlenko L.P., ed. Fizika vzryva. V 2 tom. Tom 2 [Physics of explosion. In 2 vols. Vol. 2]. Moscow, Fizmatlit Publ., 2004, 656 p.
[14] Kolpakov V.I., Ladov S.V., Orlenko L.P. Trudy MGTU. no. 557. Mekhanika impulsnykh protsessov (BMSTU Proceedings.no. 557. Pulse Process Mechanics). Moscow, 1992, pp. 59–73.