Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Comparative analysis of the shaped-charge jet formation from conical and hemispherical liners

Published: 17.01.2018

Authors: Fedorov S.V., Ladov S.V., Nikolskaya Ya.M.

Published in issue: #1(73)/2018

DOI: 10.18698/2308-6033-2018-1-1720

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The article describes numerical simulation of the metal shaped-charge jet formation during compression of conical and hemispherical liners carried out within the framework of the two-dimensional axisymmetric problem of continuum mechanics. Copper was considered as a material for liners. It is found that the transition from a constant thickness of hemispherical shaped liners to a degressive one (decreasing from the top to the bottom) makes it possible increasing the velocity of the head part of the formed shaped-charge jets to a level of 10 km / s provided by shaped charges with conical lining. It can be made by creating conditions for the realization of the implosion principle (spherically symmetrical thinning-down of the liner material to the center). The analysis of mass-velocity distributions for shaped-charge jets, formed from different liners, has been performed. Findings of the research show that using liners of a degressive thickness in the form of a half-ellipsoid or a truncated sphere is possible as an additional means of controlling the mass-velocity characteristics of the shaped-charge jets.


References
[1] Andreev S.G., Babkin A.V., Baum F.A. et al. Fizika vzryva. V 3 tomakh. Tom 2 [Physics of explosion. In 3 volumes. Vol. 2]. L.P. Orlenko, ed. Moscow, Fizmatlit Publ., 2004, 656 p.
[2] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. New York, Wiley Publ., 1989, 398 p.
[3] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Prikladnaya mekhanika i tekhnicheskaya fizika - Journal of Applied Mechanics and Technical Physics, 1999, vol. 40, no. 4, pp. 25-35.
[4] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Prikladnaya mekhanika i tekhnicheskaya fizika - Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 2, pp. 10-18.
[5] Babkin A.V., Kolychev M.E., Ladov S.V., Fedorov S.V. Oboronnaya tekhnika - Defence Technology, 1995, no. 4, pp. 47-54.
[6] Kinelovsky S.A., Trishin Yu.A. Fizika goreniya i vzryva - Combustion, Explosion, and Shock Waves, 1980, vol. 16, no. 5, pp. 26-40.
[7] Hornemann U., Holzwarth A. Propellants, Explosives, Pyrotechnics, 1993, vol. 18, no. 5, pp. 282-287.
[8] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Prikladnaya mekhanika sploshnykh sred. Tom 3: Chislennye metody v zadachakh fiziki bystroprotekaushchikh protsessov [Applied mechanics of continuous media. Vol. 3: Numerical methods in problems of the physics of fast processes]. Moscow, BMSTU Publ., 2006, 520 p.
[9] Veldanov V.A., Markov V.A., Pusev V.I. and et al. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye - Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering, 2010, no. 2, pp. 37-46.
[10] Oran E.S., Boris J.P. Numerical Simulation of Reactive Flow. Elsivier Science Publ., 1987 [In Russ.: Oran E., Boris J. Chislennoe modelirovanie reagiruyushchikh potokov. Moscow, Mir Publ., 1990, 660 p.].
[11] Fedorov S.V. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy - Ammunition and high-energy condensed systems, 2008, no. 2, pp. 73-80.
[12] Fedorov S.V. Fizika goreniya i vzryva - Combustion, Explosion, and Shock Waves, 2016, vol. 52, no. 5, pp. 116-130.
[13] Fedorov S.V., Babkin A.V., Ladov S.V. Zhurnal tekhnicheskoy fiziki - Technical physics, 2003, vol. 73, no. 8, pp. 111-117. DOI: 10.1134/1.1607449
[14] Fedorov S.V., Veldanov V.A. Izvestiya Rossiyskoy academii raketnykh i artelliriyskikh nauk - Proceedings of the Russian Academy of Rocket and Artillery Sciences, 2012, no. 1 (71), pp. 43-50.
[15] Fedorov S.V., Bayanova Ya.M., Ladov S.V. Fizika goreniya i vzryva - Combustion, Explosion, and Shock Waves, 2015, vol. 51, no. 1, pp. 150-164.
[16] Titov V.M. Doklady AN SSSR - Reports of the USSR Academy of Sciences, 1979, vol. 247, no. 5, pp. 1082-1084.
[17] Lee W.H. Computer Simulation of Shaped Charge Problems. World Scientific Publishing Co. Pte. Ltd. Publ., 2006, 380 p.
[18] Fedorov S.V. Fizika goreniya i vzryva - Combustion, Explosion, and Shock Waves, 2005, vol. 41, no. 1, pp. 120-128.
[19] Haugstad B. Propellants, Explosives, Pyrotechnics, 1983, vol. 8, no. 4, рр. 119-120.
[20] Chantaret P.Y. Theoretical consideration about jet density and shaped charge performance. Proceedings of the 17th International Symposium on Ballistics. Midrand, South Africa, 1998, vol. 2, рр. 373-380.
[21] Fedorov S.V. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2017, no. 3, pp. 71-92.