Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Numerically simulated model of meteor body fragments distribution after destruction

Published: 11.07.2017

Authors: Lukashenko V.T., Maksimov F.A.

Published in issue: #9(69)/2017

DOI: 10.18698/2308-6033-2017-9-1669

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

To calculate the flow-around of the meteor body fragments system, we have developed a simulation technique based on the grid system. This method helps to consider the bodies of various shapes, sizes and masses and also allows for fairly random relative body position in the flow. It gives an opportunity to implement the algorithm of conjugating aerodynamic and ballistic analyses. The algorithm was tested through the problem of two identical circular cylinders dispersion, the cylinders being located on the right line perpendicular to the approach flow. The obtained values of the bodies dispersion speed properly conform to the theoretical estimates. We provide recommendations for applying the computing technique and describing the dispersion of two circular cylinders of different sizes. The article considers the problem of two bodies’ dispersion, the bodies having the shape of cylinder halves. It is shown that due to the hysteresis effect the bodies must execute periodic diverging oscillations.


References
[1] Petrov K.P. Aerodinamika tel prosteyshikh form [Aerodynamics of simplest shapes bodies]. Moscow, Faktorial Publ., 1998, 432 p.
[2] Kovalev P.I., Mende N.P. Albom sverkhzvukovykh techeniy [The album of supersonic flows]. St. Petersburg, Polytechnic University Publ., 2011, 251 p.
[3] Khlebnikov V.S. Aerotermodinamika elementov letatelnykh apparatov pri statsionarnom i nestatsionarnom sverkhzvukovom otryvnom obtekanii [Aero-thermodynamics of flying vehicles elements during the stationary and nonstationary supersonic separation flow]. Moscow, Fizmatlit Publ., 2014, 168 p.
[4] Andreyev A.A., Kholodov A.S. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki - Computational Mathematics and Mathematical Physics, 1989, vol. 29, no. 1, pp. 142-147.
[5] Zhdan I.A., Stulov V.P., Stulov P.V. Doklady Akademii nauk - Doklady Physics, 2004, vol. 396, no. 2, pp. 191-193.
[6] Maksimov F.A. Aerodinamicheskoye vzaimodeistviye dvukh tel v sverkhzvukovom potoke [Aerodynamic coupling of two bodies in the supersonic flow]. Sb. trudov Mezhdunar. nauchn. konf. "Problemy ballistiki-2006 (Sankt-Peterburg, 19-23 iyunya 2007 g.) " [Proceedings of the International Scientific Conference "The problems of ballistics-2006 (St. Petersburg, June 19-23, 2007)"]. St. Petersburg, 2007, vol. 2, pp. 44-48.
[7] Barri N.G. Doklady Akademii nauk - Doklady Physics, 2010, vol. 434, no. 5, pp. 620-621.
[8] Maksimov F.A. Kompyuternyye issledovaniya i modelirovaniye - Computer Research and Modeling, 2013, vol. 5, no. 6, pp. 969-980.
[9] Barri N.G. Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika - Moscow University Mechanics Bulletin, 2005, no. 4, pp. 56-59.
[10] Guvernyuk S.V., Maksimov F.A. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki - Computational Mathematics and Mathematical Physics, 2016, vol. 56, no. 6, pp. 1025-1033.