Ballistic spacecraft double wall simulation at high speed collision
Authors: Dobritsa B.T., Dobritsa D.B.
Published in issue: #11(59)/2016
DOI: 10.18698/2308-6033-2016-11-1554
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
The article considers an engineering simulation method to calculate the ballistic limit depending on the double wall at the high-speed collision, which can be used in assessing space vehicles structural elements stability under the man-made meteor particles influence, looks at the method calculations results for two model variants equivalent to spacecraft design standard elements. We selected as models the fuel tank fragments with protection and a radiator cross-section with the built-in thermal tube, analyzed the proposed method application at increasing the bumper wall thickness for the fuel tank design that gave a positive result. The article shows various approaches validity while assessing spacecraft risks from the space debris or meteoroid impact damage - impact testing experimental results, numerical and engineering techniques.
References
[1] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdykh sred [Continuum Mechanics. In 4 vols. Vol. 4. Fundamentals of solids]. Moscow, BMSTU Publ., 2014, 624 p.
[2] Wilkins M.L. Raschet uprugoplasticheskikh techeniy. Vychislitelnye metody v gidrodinamike [Calculation of elastic-plastic flow. Computational methods in fluid dynamics]. Moscow, Mir Publ., 1967, pp. 212-263 [in Russ.].
[3] Wilkins M.L. Computer simulation of dynamic phenomena. Springer-Verlag Publ., Berlin-Heidelberg-New-York, 1999, 264 p.
[4] Aleksandrov A.A., Dimitrienko Yu.I. Matematicheskoe modelirovanie i chislennye metody - Mathematical Modeling and Computational Methods, 2014, no. 1 (1), pp. 3-4.
[5] Dimitrienko Yu.I., Dimitrienko I.D. Inzhenernyy zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2014, no. 5 (29). Available at: http://engjournal.ru/catalog/mathmodel/material/1236.html
[6] Dimitrienko Yu.I., Dzaganiya A.Yu., Belenovskaya Yu.V., Vorontsova M.A. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2008, no. 4, pp. 100-117.
[7] Gerasimov A.V., Pashkov S.V., Khristenko Yu.F. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika - Bulletin of the Tomsk State University. Mathematics and Mechanics, 2011, no. 4 (16), pp. 70-78.
[8] Dobritsa B.T., Dobrica D.B. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika - Bulletin of the Tomsk State University. Mathematics and Mechanics, 2015, no. 4 (36), pp. 64-70.
[9] Christiansen E.L. Design and performance equations for advanced meteoroid and debris shields. International Journal of Impact Engineering, 1993, vol. 14, pp. 145-156.
[10] Christiansen E.L., Kerr J.H. Ballistic Limit Equations for Spacecraft Shielding. International Journal of Impact Engineering, 2001, vol. 26, pp. 93-104.
[11] Dobritsa D.B. Vestnik FGUP NPO im. S.A. Lavochkina - Bulletin of FSUE NPO Lavochkin (Lavochkin Association), 2012, no. 5 (16), pp. 53-58.
[12] Nikolaevskiy V.N., ed. Vysokoskorostnye udarnye yavleniya [High Shock Phenomena]. Moscow, Mir Publ., 1973, 528 p.
[13] Panasyuk M.I., Novikov L.S., ed. Model kosmosa: Nauchno-informatsionnoe izdanie. V 2 tomakh. Tom 2. Vozdeystvie kosmicheskoy sredy na materialy i oborudovanie [Scientific-information publication. In 2 vols. Vol. 2. The impact of the space environment on materials and spacecraft equipment]. Moscow, KDU Publ., 2007, 989 p.
[14] Ryan S., Christiansen E. Micrometeoroid and Orbital Debris Shield Ballistic Limit Analysis Program. NASA / TM-2009-214789.
[15] Solodov A.V., ed. Inzhenernyy spravochnik po kosmicheskoy tekhnike [Engineering Guide on Space Technology]. Mosocw, Voenizdat Publ., 1977, 430 p.