Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Evaluation of the effect of compression of the holes of the cladding of aircrafts on strength

Published: 11.09.2015

Authors: Valuev K.A., Chernyatin A.S.

Published in issue: #5(41)/2015

DOI: 10.18698/2308-6033-2015-5-1403

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The article analyzes the impact of the holes compression process in the riveted joint in the sheathing of aircraft on the strength. Optimal amount of compression at which the generated residual stress field leads to a significant reduction of stress at operating loads is determined. For this purpose, using ANSYS Workbench we created a parametric finite element model of an uniaxial loaded plate (plating) with central hole, i.e. compression spherical stamp. This model provides a comprehensive study of stress-strain state in the vicinity of the hole. Comparative calculations of the plate without any preliminary compression of the hole and with compression showed that at certain level of compression we can achieve reduction of maximum stresses. The work also shows the influence of the radius on the stamp.


References
[1] Vishnyakov M.A., Vasyukov Yu.A. Konstruktorsko-tekhnologicheskie metody obespecheniya kachestva izdeliy mashinostroeniya [Design and technological methods to ensure the quality of engineering products]. Samara, Samara State Aerospace University, 2005, pp. 24-28.
[2] Roudzey G.F. Obosnovanie putei povysheniya ustalostnoi dolgovechnosti zaklepochnykh i svarnykh soedinenii aviatsionnykh konstruktsii tekhnologicheskimi metodami [Justification of the ways of increasing the fatigue life of riveted and welded joints in aircraft structures engineering methods]. Cand. Sci. (Engineering) Thesis. Moscow, 2007.
[3] Kogaev V.P., Makhutov N.A., Gusenkov A.P. Raschet dealei mashin i konstruktsii na prochnost i dolgovechnost [Calculation of machine details and structures for strength and durability]. Handbook. Moscow, Mashinostroenie, 1985, 224 p.
[4] Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace material science]. In: Vse materialy. Entsiklopedicheskii spravochnik [All materials. Encyclopedic reference], 2008, no. 3, pp. 28-29.
[5] Kablov E.N. Osnovnye napravleniya razvitiya materialov dlya aviakosmicheskoi tekhniki XXI veka [The main directions of development of materials for aerospace technology of the XXI century]. Moscow, 1999, pp. 4-6.
[6] Demidov S.P. Teoriya uprugosti [Theory of elasticity]. Moscow, Vysshaya shkola Publ., 1979, pp. 302-304.
[7] Feodosiev V.I. Soprotivlenie materialov [Strength of materials]. 10th ed. Moscow, BMSTU Publ., 1999, pp. 352-353.
[8] Alyuminii D16 [D16 Aluminum]. Available at: http://metallicheckiy-portal.ru/marki_metallov/alu/D16 (accessed 11.06.2015).
[9] Alyuminievye, titanovye, magnievye i berilievye splavy [Aluminum, titanium, magnesium and beryllium alloys]. Available at: http://viam.ru/sites/default/files/uploads/booklets/pdf/alumin_2012.pdf (accessed 11.06.2015).
[10] Makarov A.F., Vasil’ev S.L., Gromov V.F. Sposob soedineniya detalei neraziomnym zakliopochnym shvom [Method of joining parts of a one-piece riveted seam]. Available at: http://www.findpatent.ru/patent/228/2288380.html (accessed 10.06.2015).