Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Change in the acoustic anisotropy parameter of structural steel during fatigue failure

Published: 24.11.2021

Authors: Sergeeva O.A., Gonchar A.V.

Published in issue: #11(119)/2021

DOI: 10.18698/2308-6033-2021-11-2125

Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment

Material damages affect its microstructure, physical and acoustic properties. The article considers microstructural and ultrasonic studies of the St3sp5 steel carried out under cyclic uniaxial tension-compression in the low-cycle fatigue area. The fatigue tests were performed in stages. At each stage of cyclic deforming, the structure of steel samples was studied by the ultrasonic method and the change in the acoustic anisotropy parameter was determined. The relationship between the acoustic characteristics of the material and the degree of its damage is found. Based on the relationship the residual life can be predicted. The advantage of this method for determining the residual resource using the acoustic anisotropy parameter is that it is not required to determine the length of the acoustic path, for example, the wall thickness of the object under study. The influence of the deformation range of the cycle on the rate of the acoustic anisotropy parameter change is investigated. A direct linear relationship was established between the relative number of cycles and acoustic anisotropy parameter. An algorithm for determining the residual life of a material based on studies of microstructural changes and ultrasonic data is proposed.

[1] Wisner B., Mazur K., Kontsos A. Fatigue and Fracture of Engineering Materials and Structures, 2020, vol. 43 (5), pp. 859–878. DOI: 10.1111/ffe.13208
[2] Suh C.M., Yuuki R., Kitagawa H. Fatigue and Fracture of Engineering Materials and Structures, 1985, vol. 8, pp. 193–203.
[3] Chen E.Y., Sauer S., Meshii M., Tucker W.T. International Journal of Fatigue, 1997, vol. 19, pp. 75–82.
[4] Lindstedt U., Karlsson B., Nystr M. Fatigue and Fracture of Engineering Materials and Structures, 1998, vol. 21, pp. 85–98.
[5] Besel M., Brueckner-Foit A. Fatigue and Fracture of Engineering Materials and Structures, 2008, vol. 31, pp. 885–891.
[6] Kabatova M., Dudrova E., Wronski As. Fatigue and Fracture of Engineering Materials and Structures, 2009, vol. 32, pp. 214–222.
[7] Pan S., Yu G., He X., Li S., Zhang Y., Li Q. International Journal of Fatigue, 2019, vol. 118, pp. 139–149.
[8] Mishakin V.V., Klyushnikov V.A., Gonchar A.V., Kachanov M. On assessing damage in austenitic steel based on combination of the acoustic and eddy current monitoring. Int. J. Eng. Sci., 2019, vol. 135, pp. 17–22.
[9] Cantrell J.H., Yost W.T. International Journal of Fatigue, 2001, vol. 23, pp. 487–490.
[10] Gupta S., Ray A., Keller E. International Journal of Fatigue, 2007, vol. 29, pp. 1100–1114.
[11] Straka L., Yagodzinskyy Y., Landa M., Hänninen H. NDT and E International, 2008, vol. 41, pp. 554–563.
[12] Mishakin V.V., Mitenkov F.M., Klyushnikov V.A., Danilova N. Nondestructive Testing and Evaluation, 2010, vol. 25, pp. 279–288.
[13] Mishakin V., Klyushnikov V., Gonchar A., Kachanov M. Nondestructive Testing and Evaluation, 2019, vol. 38, p. 4.
[14] Mishakin V., Gonchar A., Kurashkin K., Kachanov M. International Journal of Fatigue, 2020, vol. 141, art. no. 105846.
[15] Mishakin V.V., Naumov M.Y., Mishakin S.V., Kassina N.V. Russian Journal of Nondestructive Testing, 2007, vol. 43, pp. 677–682.
[16] Kowalewski Zl., Mackiewicz S., Szelążek J., Pietrzak K., Augustyniak B. International Journal of Modern Physics B, 2008, vol. 22, pp. 5533–5538.
[17] Szelążek J., Mackiewicz S., Kowalewski Z.L. NDT and E International, 2009, vol. 42, pp. 150–156.
[18] Mishakin V.V., Klyushnikov V.A., Kassina N.V. Journal of Machinery Manufacture and Reliability, 2009, vol. 38, pp.443–447.
[19] Belyaev A.K., Lobachev A.M., Modestov V.S., Pivkov A.V. Mechanics of Solids, 2016, vol. 51, pp. 606–611.
[20] Kurashkin K.V., Gonchar A.V. Variation of acoustic characteristics of an aluminum alloy during plastic deformation at room and subzero temperatures. Proceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. AIP Conference Proceedings, 2018, vol. 2053 (1), art. ID 030030. DOI: 10.1063/1.5084391
[21] Makowska K., Piotrowski L., Kowalewski Z.L. Journal of Nondestructive Evaluation, 2017, vol. 36, p. 43. DOI: 10.1007/S10921-017-0421-9
[22] Krysztofik J., Kukla D., Manaj W., Socha G. Russian Journal of Nondestructive Testing, 2019, vol. 55, pp. 299–307.
[23] Tretyakov D., Belyaev A., Shaposhnikov N. Materials Today: Proceedings, 2020, vol. 30, pp. 413–416.
[24] Mishakin V.V., Gonchar A.V., Kirikov S.V., Klyushnikov V.A. Nondestructive Testing and Evaluation, 2021, vol. 36, pp. 225–235.
[25] Kurashkin K.V. Acoustical Physics, 2019, vol. 65, pp. 316–321.
[26] Hirao M., Pao Y.H. The Journal of the Acoustical Society of America, 1985, vol. 77, pp. 1659–1664.
[27] Pao Y.H., Wu T.T., Gamer U. Journal of Applied Mechanics, 1991, vol. 58, pp. 11–17.
[28] Belyaev A.K., Polyanskiy V.A., Semenov A.S., Tretyakov D.A., Yakovlev Y.A. Procedia Structural Integrity, 2017, vol. 6, pp. 201–207.