Computational and experimental determination of the parameters of the Cowper — Symonds hardening materials model for metal beams
Authors: Shmelev A.V., Amialiusik A.V., Ivchenko V.I., Hitrikov S.V.
Published in issue: #5(113)/2021
DOI: 10.18698/2308-6033-2021-5-2077
Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment
The study introduces a method for the computational and experimental determination of the parameters of the Cowper — Symonds material model for steel beam structures under shock loads, the method being based on the finite element method. A full-scale experiment was carried out on a developed and manufactured installation that implements dynamic shock loading of metal beams according to the three-point bending scheme. The results of the practical approbation of the proposed method are presented on the example of determining the parameters of the Cowper — Symonds model for beams of steel 20. The difference between the calculated and experimental values of the residual deflection of the beam did not exceed 5%. Computer simulation of the experiment was carried out in the ANSYS LS-DYNA software package. The above methodological approaches are proposed to be used in the calculated assessment of the strength of the power structure of passenger vehicles for compliance with the requirements of UN Regulation No. 66.
References
[1] Voloshenko-Klimovitskiy Yu.Ya. Dinamicheskiy predel tekuchesti [Dynamic yield stress]. Moscow, Nauka Publ., 1965, 179 p.
[2] Vincze-Pap S., Csiszár A. Applied Virtual Technology (VT) on Bus Superstructure Roll-Over Tests. In: Jármai K., Farkas J. (eds) Design, Fabrication and Economy of Metal Structures. Springer, Berlin, Heidelberg, 2013, pp. 551–560. https://doi.org/10.1007/978-3-642-36691-8_83
[3] Pravila EEK OON №66 (02) / Peresmotr 1. Edinoobraznye predpisaniya, kasayuschiesya ofitsialnogo utverzhdeniya krupnogabaritnykh passazhirskikh transportnykh sredstv v otnoshenii prochnosti ikh silovoy struktury [UNECE Regulation No. 66 (02) / Revision 1. Uniform provisions concerning the approval of large passenger vehicles with regard to their structural strength]. Minsk, BelGISS Publ., 2006, 74 p.
[4] Pravila EEK OON № 29 (02) / Peresmotr 2. Edinoobraznye predpisaniya, kasayushhiesya ofitsialnogo utverzhdeniya transportnykh sredstv v otnoshenii zaschity lits, nakhodyaschikhsya v kabine gruzovogo transportnogo sredstva [UNECE Regulation No. 29 (02) / Revision 2. Uniform provisions concerning the approval of vehicles with regard to the protection of persons in the cab of a commercial vehicle]. Minsk, BelGISS Publ., 2015, 29 p.
[5] Elitok K., Guler M.A., Bayram B., Stelzmann U. An Investigation on the Roll-Over Crashworthiness of an Intercity Coach, Influence of Seat Structure and Passenger Weight. 9th International LS-DYNA Conference. Dearborn, Michigan USA, 2006, pp. 17–30.
[6] Rogov P.S. Razrabotka metodiki obespecheniya passivnoy bezopasnosti kuzovov avtobusov v usloviyakh oprokidyvaniya pri proektirovanii. Dis. … kand. tekhn. nauk [Development of a methodology for ensuring passive safety of bus bodies under rollover conditions during design. Cand. eng. sc. diss.]. N. Novgorod, 2015, 189 p.
[7] Vashurin A.S. Razrabotka metodiki i otsenka passivnoy bezopasnosti kuzovov iz mnogosloynykh paneley vakhtovykh avtobusov. Dis. … kand. tekhn. nauk [Development of methods and assessment of passive safety of bodies made of multilayer panels of rotational buses. Cand. eng. sc. diss.] N. Novgorod, 2014, 260 p.
[8] Pavlata P. Virtual Simulations of Bus Approval Tests according to European Standards. MSC.Software 2005 Virtual Product Development Conference, 2005.
[9] Kaptanoğlu M., Kucuk O. Rollover crashworthiness of a multipurpose coach. 7. Otomotiv Teknolojileri Kongresi – OTEKON 2014. Bursa, Turkey, 26–27 May 2014. Available at: https://www.hexagonstudio.com.tr/wp-content/uploads/2019/03/rollover_crashworthiness_of_a_multipurpose_coach.pdf/ (accessed August 10, 2019).
[10] Sadyrin A.I. Kompyuternye modeli dinamicheskogo razrusheniya konstruktsionnykh materialov [Computer models of dynamic fracture of structural materials]. N. Novgorod, Nizhegorodskiy gosuniversitet Publ., 2010, 35 p.
[11] John O. LS-DYNA Theory Manual, 2006. Available at: http://ftp.ecn.purdue.edu (accessed August 10, 2018).
[12] Nikhamkin M.Sh., Voronov L.V., Lyubchik O.L., Gladkiy I.L. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk — Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2011, vol. 13, no. 4 (4), pp. 991–997.
[13] Al Salahi A.A., Othman R. Constitutive Equations of Yield Stress Sensitivity to Strain Rate of Metals: A Comparative Study. Journal of Engineering, 2016, pp. 1–7.
[14] Hernandez C., Maranon A., Ashcroft I.A., Casas-Rodriguez J.P. A computational determination of the Cowper-Symonds parameters from a single Taylor test. Applied Mathematical Modelling, 2013, vol. 37, pp. 4698–4708.
[15] Škrlec A., Klemenc J. Estimating the Strain-Rate-Dependent Parameters of the Cowper-Symonds and Johnson-Cook Material Models using Taguchi Arrays. Strojniški vestnik — Journal of Mechanical Engineering, 2016, vol. 4 (62), pp. 220–230.
[16] Marangoni A.L., Massaroppi Junior E. Cowper-Symonds parameters estimation for ABS material using design of experiments with finite element simulation. Polimeros, 2017, vol. 3 (27), pp. 220–224.
[17] Hashemi S.K., Bradford M.A. The strain-rate effects on the numerical simulation of steel beams under blast loads. WIT Transactions on the Built Environment, 2014, vol. 141, pp. 311–321.
[18] Amialiusik A.V., Shmialiou A.V., Kononov A.G., Rubtsov A.V. Mekhanika mashin, mekhanizmov i materialov — Mechanics of Machines, Mechanisms and Materials, 2017, no. 2, pp. 19–27.
[19] Shmialiou A.V., Amialiusik A.V., Ivchenko V.I., Khitrikov S.V. Kompyuternoe modelirovanie protsessov deformirovaniya metallicheskikh balok pri dinamicheskom udarnom nagruzhenii [Computer simulation of deformation processes of metal beams under dynamic shock loading]. Sbornik nauchnykh trudov: Aktualnye voprosy mashinovedeniya [Collection of scientific papers: Actual problems of mechanical engineering]. 2020, iss. 9, pp. 111–116.