A method for determining the parametric sensitivity of the dynamical systems phase coordinates
Authors: Tushev O.N., Belyaev A.V.
Published in issue: #7(103)/2020
DOI: 10.18698/2308-6033-2020-7-1995
Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment
The article presents a rational method for determining sensitivity functions of the first and second orders of phase coordinates to changes in system parameters and external effects. With this approach it is not necessary to integrate intricate chain- coupled differential equations with respect to sensitivity functions of various orders. A vector of additional variables (invariants) of the same dimension is introduced as the vector of phase coordinates. To find it, a conjugate linear inhomogeneous differential equation is obtained, which must be integrated in the inverse time. The sensitivity functions of any order can be calculated independently from each other using this vector. No assumptions reducing the accuracy of the result or restricting the capabilities of the method are made. The linearity of the equation with respect to invariants allows solving the problem in the more convenient form. Using the recurrence relation, the sensitivity functions are calculated sequentially in time from the initial point. The solution of the equation is expressed through a fundamental matrix which is computationally treated as a multiplicative integral. The results are illustrated by the example.
References
[1] Rozenwasser E.N., Yusupov R.M. Trudy SPIIRAN — SPIIRAS Proceedings, 2013, no. 2 (25), pp. 13–41.
[2] Bushuev A.Yu., Yakovlev D.O. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, no. S3, pp. 66–69.
[3] Rozenwasser E.N., Yusupov R.M. Chuvstvitelnost sistem upravleniya [Sensitivity of control systems]. Moscow, Nauka Publ., 1981, 464 p.
[4] Hog E., Choi K., Komkov V. Analiz chuvstvitelnosti pri proyektirovanii konstruktsiy [Analysis of sensitivity in the designing structures]. Moscow, Mir Publ., 1988, 428 p.
[5] Khuan Sh., Kostin V.A., Lapteva E.Yu. Vestnik Moskovskogo aviacionnogo institute — Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 64–72.
[6] Tushev O.N., Berezovsky A.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye — Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering, 2007, no. 1, pp. 35–44.
[7] Heylen W., Lammens S., Sas P. Modal Analysis Theory and Testing. Katholieke Universiteit Publ., 1997 [In Russ.: Heylen W., Lammens S., Sas P. Modalnyy analiz: teoriya i ispytaniya. Moscow, Novatest LLC Publ., 2010, 319 p.].
[8] Batseva O.D., Dmitriev S.N. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 7. http://dx.doi.org/10.18698/2308-6033-2018-7-1785
[9] Tushev O.N., Berezovsky A.V. Izvestiya RAN. Problemy mashinostroyeniya i nadezhnosti mashin — Journal of Machinery Manufacture and Reliability, 2013, no. 1, pp. 18–27.
[10] Ivanov V.N., Dombrovsky I.V., Shevelev N.A. Vychislitelnaya mekhanika sploshnykh sred — Computational continuum mechanics, 2011, vol. 4, no. 3, pp. 58–67.
[11] Speedy C.B., Brown R.F., Goodwin G.C. Control Theory: Identification and Optimal Control. In: Electronic and electrical engineering texts. Vol. 7. Oliver & Boyd Publ., 1970, 293 p. [In Russ.: Speedy C.B., Brown R.F., Goodwin G.C. Teoriya upravleniya. Identifikatsiya i optimalnoye upravleniye. Moscow, Mir Publ., 1973, 248 p.].
[12] Gantmakher F.R. Teoriya matrits [Matrix Theory]. Moscow, Fizmatlit Publ., 2010, 558 p.