Error correction in solid-state wave gyroscope with electrostatic control sensors
Authors: Maslov D.A., Merkuryev I.V.
Published in issue: #9(81)/2018
DOI: 10.18698/2308-6033-2018-9-1800
Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment
The article considers three ways of correcting drift caused by resonator nonlinear oscillations in a solid-state wave gyroscope with electrostatic control sensors. The first method is for gyros operating in the open mode of the angular velocity sensor.
The proposed angular velocity formula is used taking into account the nonlinearity factor and other parameters of the gyro mathematical model, previously found by a specially developed technique. The second method is developed for gyros operating in the compensation mode of the angular velocity sensor. The method is based on the supply of control signals taking into account the nonlinearity factor and other gyro imperfections. The third method consists in linearizing the resonator oscillations by means of specially generated signals applied to electrostatic control sensors.
The proposed methods can be used for eliminating the nonlinearity of the oscillations and the linearization of the power characteristics of the control sensors for solid-state wave gyroscopes with hemispherical, cylindrical and ring resonators
References
[1] Zhuravlev V.F., Perelyaev S.E. Innovatsionnye, informatsionnye i kommunikatsionnye tekhnologii — Innovative, information and communication technologies, 2016, no. 1, pp. 425−431.
[2] Basarab M.A., Lunin B.S., Matveev V.A., Fomichev A.V. Chumankin E.A., Yurin A.V. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroyeniye — Herald of the Bauman Moscow State Technical University. Series: Instrument Engineering, 2014, no. 4, pp. 80−96.
[3] Jeanroy A., Bouvet A., Remillieux G. HRG and marine applications. Gyroscopy and Navigation, 2014, vol. 5, no. 2, pp. 67–74.
[4] Zhuravlev V.F., Klimov D.M. Volnovoy tverdotelnyy giroskop [Solid-state wave gyroscope]. Moscow, Nauka Publ., 1985, 125 p.
[5] Merkuryev I.V., Podalkov V.V. Dinamika mikromekhanicheskogo i volnovogo tverdotelnogo giroskopov [Dynamics of micromechanical and solid-state wave gyroscopes]. Moscow, Fizmatlit Publ., 2009, 228 p.
[6] Matveev V.A., Lipatnikov V.I., Alekhin A.V. Proektirovanie volnovogo tverdotelnogo giroskopa [Designing of a solid-state wave gyroscope]. Moscow, BMSTU Publ., 1997, 167 p.
[7] Zhuravlev V.F. Mekhanika tverdogo tela. Izvestiya Rossiyskoy akademii nauk — Mechanics of Solids. A Journal of Russian Academy of Sciences, 2004, no. 4, pp. 19−23.
[8] Zhbanov Yu.K., Zhuravlev V.F. Mekhanika tverdogo tela. Izvestiya Rossiyskoy akademii nauk — Mechanics of Solids. A Journal of Russian Academy of Sciences, 1998, no. 4, pp. 4−16.
[9] Matveev V.A., Lunin B.S., Basarab M.A., Chumankin E.A. Nauka i obrazovanie: electronnyy nauchno-tekhnicheskiy zhurnal — Science and Education: Electronic Scientific and technical Journal, 2013, no. 6. DOI: 10.7463/0613.0579179
[10] Basarab M.A., Matveev V.A., Lunin B.S., Chumankin E.A. Static Balancing of Metal Resonators of Cylindrical Resonator Gyroscopes. Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 213–218.
[11] Basarab M.A., Matveev V.A., Lunin B.S., Chumankin E.A. Algorithms and Technologies for Surface Balancing of Hemispherical and Cylindrical Resonator Gyroscopes. 22nd Saint Petersburg International Conference on Integrated Navigation Systems. ICINS 2015–22. St. Petersburg, 2015, pp. 383−386.
[12] Maslov A.A., Maslov D.A., Merkuryev I.V. Nonlinear Effects in Dynamics of Cylindrical Resonator of Wave Solid-State Gyro with Electrostatic Control System. Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 224–229.
[13] Sudipto K. de., Aluru N.R. Complex nonlinear oscillations in electrostatically actuated microstructures. J. Microelectromech. Syst., 2006, vol. 15, no. 2, pp. 355–369.
[14] Rhoads J., Shaw S., Tunner K., Moehlis J., DeMartini B., Zhang W. Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound and Vib., 2006, vol. 296, pp. 797–829.
[15] Chavarett F.R., Balthaza I.M., Guilherm I.R., Nasciment O.S. A reducing of chaotic behavior to a periodic orbit, of a combdriver drive system (MEMS) using particle swarm optimization. Proceedings of the 9th Brazilian Conference on Dynamics Control and their Applications. Serra Negra. 2010, pp. 378−383.
[16] Zhuravlev V.F. Mekhanika tverdogo tela. Izvestiya Rossiyskoy akademii nauk — Mechanics of Solids. A Journal of Russian Academy of Sciences, 1997, no. 6, pp. 27−35.
[17] Maslov A.A., Maslov D.A., Merkuriev I.V. Pribory i sistemy, Upravlenie, control, diagnostika — Instruments and Systems: Monitoring, Control, and Diagnostics, 2014, no. 5, pp. 24−29.
[18] Maslov D.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 10 (70). DOI: 10.18698/2308-6033-2017-10-1695
[19] Maslov D.A. Mashinostroenie i inzhenernoe obrazovanie — Mechanical engineering and engineering education, 2017, no. 1 (50), pp. 24–31.
[20] Zhuravlev V.F. Mekhanika tverdogo tela. Izvestiya Rossiyskoy akademii nauk — Mechanics of Solids. A Journal of Russian Academy of Sciences, 2000, no. 5, pp. 5–9.
[21] Zhuravlev V.F., Linch D.D. Mekhanika tverdogo tela. Izvestiya Rossiyskoy akademii nauk — Mechanics of Solids. A Journal of Russian Academy of Sciences, 1995, no. 5, pp. 12−24.
[22] Bogolyubov N.N., Mitropolsky Yu.A. Asimptoticheskie metody v teorii nelineynykh kolebaniy [Asymptotic methods in the nonlinear oscillation theory]. Moscow, Nauka Publ., 1974, 503 p.
[23] Maslov A.A., Maslov D.A., Merkuryev I.V., Podalkov V.V. Compensation Methods of Ring Resonator Microgyroscope Drift. Proceedings of the24rd Saint Petersburg International Conference on Integrated Navigation Systems. ICINS 2017 –24. St. Petersburg, 2017, pp. 64−67.