Identification of solid state wave gyroscope parameters at slowly varying forced oscillation frequency
Authors: Maslov D.A.
Published in issue: #10(70)/2017
DOI: 10.18698/2308-6033-2017-10-1695
Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment
Currently, the solid state wave gyroscope (SSWG) is one of the prospective transducers of the inertial data, as it shows high reliability and has small overall dimensions at relatively low cost. The navigation and traffic control systems for the objects of various applications designed on the base of SSWG have a wide range of usage. To increase the SSWG characteristics of precision is an up-to-date line of research. The problem of identifying the SSWG parameters is connected with increasing the SSWG precision and aimed at estimating the tolerance caused by both the resonator manufacturing imperfections and nonlinear nature of the oscillations. There is a technique which allows defining the nonlinearity factor along with the linear model parameters. It uses a time-consuming measure procedure which is carried out at stationary modes of constrained oscillations corresponding to various adjustable frequencies of the generator. The conduct of such measurements requires numerous frequency manipulations and waiting for the transition processes ending. This work suggests a technique for identifying the gyroscope parameters with consideration for nonlinearity at slowly varying frequency of the constrained oscillations. The identified parameters include the frequency difference, the versatility, the parameters of the external action onto the resonator and the nonlinearity factor. These parameters are needed for the quality control and technological advancement of gyroscope manufacturing as well as for its drift cancellation. The allowance for the nonlinear nature of the resonator oscillations enables testing at high oscillations amplitudes when the signal-to-noise ratio is fairly high, which helps to increase the accuracy of the parameters identification. In order to estimate the parameters of the obtained mathematical model for the resonator oscillations at slowly varying frequency of the constrained oscillations we use a Kalman optimum filtering algorithm. The developed technique will allow automating the parameters identification process at slowly varying frequency of the constrained oscillations and reducing the time for defining the parameters of the working gyroscope.
References
[1] Zhuravlev V.F., Klimov D.M. Volnovoy tverdotelnyy giroskop [Solid state wave gyroscope]. Moscow, Nauka Publ., 1985, 125 p.
[2] Zhuravlev V.F. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela - Mechanics of Solids, 1993, no. 3, pp. 15-26.
[3] Zhuravlev V.F. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela - Mechanics of Solids, 1997, no. 6, pp. 27-35.
[4] Zhuravlev V.F. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela - Mechanics of Solids, 2000, no. 5, pp. 186-192.
[5] Zhbanov Yu.K., Zhuravlev V.F. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela - Mechanics of Solids, 1998, no. 4, pp. 4-16.
[6] Matveev V.A., Lipatnikov V.I., Alekhin A.V. Proektirovanie volnovogo tverdotelnogo giroskopa [Designing the solid state wave gyroscope]. Moscow, BMSTU Publ., 1997, 167 p.
[7] Matveev V.A., Lunin B.S., Basarab M.A., Chumankin E.A. Nauka i obrazovanie - Science and Education, 2013, no. 6. DOI http://dx.doi.org/10.7463/0613.0579179
[8] Basarab M.A., Matveev V.A., Lunin B.S., Chumankin E.A. Giroskopiya i navigatsiya - Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 213-218.
[9] Basarab M.A., Matveev V.A., Lunin B.S., Chumankin E.A. Algorithms and technologies for surface balancing of hemispherical and cylindrical resonator gyroscopes. Proceedings of the 22nd St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, Concern CSRI Elektropribor, JSC, 2015, pp. 383-386.
[10] Basarab M.A., Matveev V.A. Pribory i sistemy. Upravlenie, kontrol, diagnostika - Instruments and Systems: Monitoring, Control and Diagnostics, 2016, no. 9, pp. 9-15.
[11] Zhanrua A., Buve A., Remille Zh. Giroskopiya i navigatsiya - Gyroscopy and Navigation, 2013, no. 4, pp. 24-34.
[12] Merkurev I.V., Podalkov V.V. Dinamika mikromekhanicheskogo i volnovogo tverdotelnogo giroskopov [Dynamics of micromechanical and solid state wave gyroscopes]. Moscow, Fizmatlit Publ., 2009, 228 p.
[13] Gavrilenko A.B., Merkurev I.V., Podalkov V.V. Vestnik Moskovskogo energeticheskogo institute - MPEI Vestnik, 2010, no. 5, pp. 13-19.
[14] Maslov A.A., Maslov D.A., Merkurev I.V. Pribory i sistemy. Upravlenie, kontrol, diagnostika - Instruments and Systems: Monitoring, Control and Diagnostics, 2014, no. 5, pp. 18-23.
[15] Maslov A.A., Maslov D.A., Merkurev I.V. Sposob opredeleniya parametrov volnovogo tverdotelnogo giroskopa [The technique for identifying the parameters of the solid state wave gyroscope]. Patent RF, no. 2544308, 2015, no. 14, p. 8.
[16] Maslov A.A., Maslov D.A., Merkuryev I.V. Giroskopiya i navigatsiya - Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 224-229.
[17] Naife A.Kh. Metody vozmushcheniy [Perturbation methods]. Moscow, Mir Publ., 1976, 454 p. [in Russ.].
[18] Lloyd E., Lederman U. Spravochnik po prikladnoy statistike [Applied statistics reference]. Moscow, Finansy i statistika Publ., 1990, 528 p. [in Russ.].
[19] Brammer K., Ziffling G. Filtr Kalmana - Byusi [Kalman-Bucy filter]. Moscow, Nauka Publ., 1982, 257 p. [in Russ.].