Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Simulation of dynamic deformation processes in flexible textile composites

Published: 08.10.2014

Authors: Dimitrienko Yu.I., Dimitrienko I.D.

Published in issue: #5(29)/2014

DOI: 10.18698/2308-6033-2014-5-1236

Category: Mathematic modeling | Chapter: Modeling in materials science

A mathematical model of deforming flexible composites based on aramid fabrics under shock-wave influences is proposed. The model takes into account the deformation characteristic distinctions of this class of composite materials: the ability to deform without destruction at finite deformations, a significant dissimilarity of deformation patterns under tension and compression, the dependence of these patterns on the loading rate, the presence of pseudoplastic material properties caused by pulling the filaments from the fabric and others. Statement of the problem of flexible armor material dynamic deformation has been defined. The adaptive banded grid method has been applied for its decision in a two-dimensional formulation. An example of the numerical solution of the problem of high-speed impact of the hammer on the flexible armor material is given. Some specific effects of this class material deformation are analyzed.


References
[1] Kharchenko E.F., Ermolenko A.F Kompositnye, textilnye i kombinirovannye bronematerialy [Composite, Textile and Combined Armor Materials]. Moscow, TsNIISM Publ., 2013, 294 p.
[2] Grigoryan V.A., Kobylkin I.F., Mirinin V.M., Chistyakov E.N. Materialy i zashchitnye struktury dlya lokalnogo i individualnogo bronirovaniya [Materials and Protective Structures for Local and Individual Armoring]. Moscow, RadioSoft Publ., 2008, 406 p.
[3] Zhu D., Mobaster B., Rajan S.D. Dynamic testing of Kevlar-49 fabric. Journal of Materials in Civil Engeneering, 2011, vol. 23, pp. 230-239.
[4] Tan V.B., Zeng X.S., Shim V.P.W. Characterization and constitutive modeling of aramid fibers at high strain rates. International Journal of Impact Engineering, 2008, vol. 35, no. 1, pp. 1303-1313.
[5] Koh C.P., Shim V.P.W., Tan V.B.C., Tan B.L. Response of a high-strength flexible laminate to dynamic tension. International Journal of Impact Engineering, 2008, vol. 35, pp. 559-568.
[6] Shim V.P.W., Lim C.T., Foo K.J. Dynamic mechanical properties of fabric armor. International Journal of Impact Engineering, 2001, vol. 25, pp. 1-15.
[7] Lee Y.S., Wetzel E.D., Erges R.G., Wagner N.J. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. Journal of Materials Science, 2003, vol. 3, pp. 2825-2833.
[8] Mossakovsky P.A.,Bragov A.M., Kolotnikov M.E., Antonov F.K. Investigation of shear thickening fluid dynamic properties and its influence on the impact resistance of multilayered fabric composite barrier. 11th LS-DYNA users Conference-2010.
[9] Dimitrienko Yu.I. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2003, no. 2, pp. 47-61.
[10] Dimitrienko Yu.L, Dzaganiya AYm, Belenovskaya Yu.V., Vorontsova M.A. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2008, no. 4, pp. 100-117
[11] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear Continuum Mechanics]. Moscow, Physmathlit Publ., 2009, 610 p.
[12] Dimitrienko Yu.I. Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, 2010, 722 p.
[13] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Continuum Mechanics. Vol. 2. Universal laws of mechanics and electrodynamics of continuous media]. Moscow, BMSTU Publ., 2011, 560 p.
[14] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[15] Kondaurov V.I, Kukudzhanov V.N. Ob opredelyaushchikh uravneniyakh i chislennom reshenii nekotorykh zadach dinamiki uprugoplastichnoy sredy s konechnymi deformatsiyami. [Numerical Solutions of Some Problems of the Dynamics of Elastoplastic Medium with Finite Deformations]. In: Chislennye metody v mekhanike tverdogo deformiruemogo tela. [On the Defining Equations and Numerical Techniques in Deformable Solids Mechanics]. Moscow, CC AS USSR, 1978, pp. 84-121.
[16] Pozdeev A.A., Trusov P.V. Nyashin Yu. I. Bolshie uprugoplastichnye deformatsii: teoriya, algoritmy, prilozheniya. [Large Elastoplastic Deformations: Theory, Algorithms, Applications]. Moscow, Nauka Publ., 1986, 232 p.
[17] Dimitrienko Yu.I. Tenzornoe ischislenie [Calculus of tensors]. Moscow, Vysshaya shkola Publ., 2001, 576 p.
[18] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T.L Tenzornoe ischislenie. [Continuum Mechanics. Vol. 1. Calculus of Tensors.]. Moscow, BMSTU Publ., 2011, 463 p.
[19] Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. Metod lentochnykh adaptivnykh setok dlya chislennogo modelirovaniya v gazovoy dinamike [The Adaptive Banded Grid Method for Numerical Simulation in Gas Dynamics]. Moscow, Fismatlit Publ., 2011, 280 p.
[20] Dimitrienko Yu.I., Zakharov A.A. Informatsionnye Tekhnologii - Information Technologies, 2009, no. 6, pp. 12-16.
[21] Dimitrienko Yu.I., Koryakov M.N., Syzdykov E.K. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, no. 2, pp. 87-97.
[22] Dimitrienko Yu.I., Sborshchikov S.V., Sokolov A.P., Shpakova Yu.V. Vychislitelnaya mekhanika sploshnoy sredy - Computational Continuum Mechanics, 2013, no. 4, pp. 389-401.
[23] Dimitrienko Yu.I., Sborshchikov S.V., Sokolov A.P., Sadovnichiy D.N., Gafarov B.R. Kompozity i nanostruktury - Composites and Nanostructures, 2013, no. 3, pp. 35-51.