Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Approach to developing control systems of micro spacecraft in neuronetwork basis

Published: 08.10.2014

Authors: Konovalov V.N., Korlyakova M.O.

Published in issue: #5(29)/2014

DOI: 10.18698/2308-6033-2014-5-1271

Category: Information technology | Chapter: Management and Navigation

The article reviews the main directions in hardware implementation of neural networks and examines their opportunities for using onboard micro spacecraft. The main requirements to onboard control systems and approaches to their neuronetwork realization are considered. The findings of this research illustrate restrictions and requirements to the resources necessary for onboard systems of micro spacecraft. We show that it is possible to find the effective solution in simple networks. We modeled separate blocks of a neuronetwork control system in the conditions of limited resources and presented the neuronetwork model of approximating the tabular model of the atmosphere. We provide the sample task solution in float and discrete formats of synapse. The article delves into approximation errors in networks of different architecture and shows, that even for options with the discrete form of inputs and a short format of representing the synapses, the task solution quality is sufficient.


References
[1] Proletarsky A.V. Nauka i obrazovanie. Elektronnoe nauchno-tekhnicheskoe izdanie - Science and education. Electronic scientific and technical periodical, 2007, no. 3. Available at: http://cactus.stack.net/doc/64655.html (accessed 12 December 2013).
[2] Efimov V.V. Mekhatronika, avtomatizatsiya, upravlenie - Mechatronics, Automation, Control, 2003, no. 5, pp. 26-32.
[3] Nikishov A.N., Oleinik A.A., Talimanchuk L.L., Zaitsev A.V., Sukhanov N.V. Neirokompyutery - Neurocomputers, 2010, no. 1, pp. 34-39.
[4] Khaikin S. Neironnye seti: polnyi kurs [Neural networks: a complete course]. 2nd ed., transl. from Engl. Moscow, "Izd. dom Vil’iams, Ltd" Publ., 2006, 1104 p.
[5] Ermolenko A.V., Korlyakova M.O. Primenenie virtual’nykh modelei ob’ektov dlia obucheniia neirosetei. [Applying virtual models of objects for training neural networks]. 12-ya Nats. konf. po iskusstvennomu intellektu s mezhdunarodnym uchastiem Kll-2010, Tver’, Rossiya, 2010: Trudy konferentsii. [Twelfth National Conference on Artificial Intelligence with CAI 2010, Tver, Russia, 2010: Proceedings]. Moscow, Fizmatlit Publ., 2010, vol. 2, pp. 107-115.
[6] Karimov R.R., Kositsyn V.V., Ruban V.I., Blinov V.N., Valeev S.S., Islamgulov T.V. Sistema informatsionnoi podderzhki zhiznennogo tsikla malogo nauchno-obrazovatel’nogo kosmicheskogo apparata [System of informational life cycle support of small scientific and educational spacecraft]. Sbornik trudov 11-i mezhdunar. konf. CSIT [Proceedings of the 11th Int. conf. CSIT], 2009, vol. 3, pp. 22-28.
[7] Sevastyanov N.N., Branets V.N., Panchenko V.A., Kazinsky N.V., Kondranin T.V., Negodyaev S.S. Analiz sovremennykh vozmozhnostei sozdaniya malykh kosmicheskikh apparatov dlya distantsionnogo zondirovaniya Zemli [Analysis of modern possibilities of creating small spacecraft for remote Earth sensing]. TrudyMFTI [MIPT Proceedings], 2009, vol. 1, no. 3. Available at: http://www.gazprom-spacesystems.ru/ru/innovation_and_science/science/index.php (accessed 21 August, 2011).
[8] Blinov V.N., Valeev S.S., Islamgulov T.V., Karimov R.R., Kositsyn V.V., Ruban V.I. Vestnik UGATU, Seriya "Upravlenie, vychislitel’naia tekhnika i informatika" - Bulletin of ASTU, Series "Management, computer science and informatics", 2010, vol. 14, no. 4 (39), pp. 97-103.
[9] Shakhnov V.A., Vlasov A.I., Kuznetsov A.S. Polyakov Yu.A. Neirokomp’iutery - arkhitektura i realizatsiya [Neurocomputers - architecture and implementation]. Available at: http://www.citforum.idknet.com/hardware/neurocomp/index.shtml (accessed 30 November, 2013).
[10] Alyushin M.V. Apparatnaya realizatsiya bystrodeistvuyuschikh neirosetei na osnove programmiruemos logiki firm AMD, ALTERA, XILINX [Hardware implementation of high-speed neural network based on programmable logic by the companies AMD, ALTERA, XILINX]. Neiroimformatika - Neuroinformatics’99. Moscow, Mosocw Engineering Physical Institute, 1999, part 2, pp. 18-24.
[11] Komartsova L.G., Maksimov A.V. Neirokompyutery [Neurocomputers]. Moscow, Bauman MSTU Publ., 2004, 400 p.
[12] Chernikov V.M., Viksne P.E., Fomin D.V., Shevchenko P.A., Yafrakov M.F. Neiroprotsessor, ustroistvo dlya vychisleniya funktsiy nasyscheniya, vychislitelnoe ustroistvo i summator [Neuroprocessor, a device for calculating the saturation function, the computing device and an adder]. Patent RU 2131145. Available at: http://www.findpatent.ru/patent/213/2131145.html (accessed 25 June 2013).
[13] COESA Atmosphere Model. Available at: http://www.mathworks.com/help/aeroblks/coesaatmospheremodel.html (accessed 25 June, 2013).
[14] Aerospace BlockSet. For use with Simulink. User’s Guide. Available at: http://www.mathworks.com/help/releases/R13sp2/pdf_doc/aeroblks/aeroblks.pdf (accessed 12 December, 2013)