Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Interpretation of unexplained abnormal secular change of the semimajor axis and the eccentricity of the lunar orbit in the modern era

Published: 09.12.2014

Authors: Barkin Yu.V., Barkin M.Yu.

Published in issue: #12(36)/2014

DOI: 10.18698/2308-6033-2014-12-1338

Category: Basic science

Unexplained secular effects in the orbital movement of the Moon are consequences of the discovered in recent years phenomenon of remove of the center of mass of the Moon relative its mantle and crust towards the dark side. Abnormal secular variations of the semimajor axis and the eccentricity of the lunar orbit discussed in modern scientific literature are interpreted as fictitious phenomena. They are conditioned by secular drift of the centre of mass of the Moon relative to its crust and mantle in the direction from the Earth that is towards the dark side of the Moon. An approximate estimate of the drift velocity may be about 5...S mm/year. The phenomenon and the secular anomalous change of the lunar orbital eccentricity are displayed by precision data of laser observations of the Moon only, but not dynamic features of the movement of the centre of mass of the Moon in space. The abnormal secular change of the orbital eccentricity of the Moon is concerned with the spatial nature of the displacement of the centre of mass of the Moon regarding the system of reflectors on its surface. This is also true for secular and abrupt changes of the orbital elements of the Moon in the laser observation data.


References
[1] Williams J.G., Boggs D.H. Lunar Core and Mantle. What Does LLR See? Schilliak S., ed. Proceedings of the 16th International Workshop on Laser Ranging, 2009, pp. 101-120. Available at: http://cddis.gsfc.nasa.gov/lw16/docs/papers/sci_1_Williams_p.pdf (accessed on 15.09.2014).
[2] Iorio L. On the anomalous secular increase of the eccentricity of the orbit of the Moon Mon. Not. R. Astron. Soc. 415, 1266-1275. Monthly Notices of the Royal Astronomical Society. 02/2011, 415(2). doi:10.1111/j.1365-2966.2011.18777.x Source: arXiv
[3] Barkin Yu.V. Modern problems of selenodynamics. Astronomical and Astro-physical Transactions (AApTr), 2010/2011, vol. 27, Issue 1, pp. 101-104. Available at: http://www.aaptr.com/upload/AAPTR/pdf/101_104_Barkin_V2.pdf
[4] Barkin Yu., Hanada H., Barkin M. The drift and steps of the center of mass of the Moon with respect to the crust and interpretation of unexplained secular changes of the lunar orbit. The Fifth Moscow Solar System Symposium (5MS3). 13-18 October, 2014, Moscow, Russia. Book of abstracts. Abstract 5MS3-PS-17. Available at: http://ms2014.cosmos.ru/sites/ms2014.cosmos.ru/files/5m-s3_program-0919.pdf
[5] Barkin Yu.V. Ob"yasnenie endogennoy aktivnosti planet i sputnikov i ee tsiklichnosti [Explanation of endogenous activity of planets and satellites, and its cyclicity]. Izvestiya sektsii nauk o Zemle Rossiyskoy akademii estestvennykh nauk [Proceedings of the Earth Sciences Section of the Russian Academy of Natural Sciences]. Moscow, VINITI, 2002, iss. 9, pp. 45-97.
[6] Weber R.C., Lin P.-Y., Garnero E.G., Williams Q., Lognonné P. Seismic Detection of the Lunar Core. Science, 21 January, 2011, vol. 331, no. 6015, pp. 309-312. doi: 10.1126/science.1199375
[7] Zotov L.V., Barkin Yu.V., Lubushin A.A. Geocenter motion and its geodynamical contenst. Space Geodynamics and Modeling of the Global Geodynamic Processes, Novosibirsk, Russian Federation, 22-26 September, 2008; Russian Academy of Sciences, Trofimuk Inst. of Petrol. Geol. And Geophys., SB RAS. Novosibirsk: Acad. Publ. House "Geo", 2009. pp. 98-101.
[8] Krasinsky G.A. Opredelenie selenodinamicheskikh parametrov iz analiza lunnykh lazernykh izmereniy dallnosti Luny 1970-2001 gody [Determination of selenodynamic parameters from the analysis of lunar laser range measurements of the Moon in 1970-2001]. Report of the Institute of Applied Astronomy RAS, no. 148. St. Peterburg, 2003, 27 p.
[9] Chapront J., Chapront-Touzé M., Francou G. A new determination of lunar orbital parameters, precession constant, and tidal acceleration from LLR. Astron. Astrophys., 2002, vol. 387, pp. 700-709.
[10] Williams J.G. Lunar Laser Ranging and the Evolution of Lunar Dynamics. Jet Propulsion Laboratory, California Institute of Technology. June 2006. Halifax, Nova Scotia (Brower lecture). Ppt.
[11] Williams J.G., Boggs D.H., Turyshev S.G. LLR Analysis - JPL Model and Data Analysis LLR Workshop, Harvard, Boston, MA December 9-10, 2010.
[12] Williams J.G., Boggs D.H., Ratcliff J.T. Lunar moment of inertia and Love number. 42nd Lunar and Planetary Science Conference. 2011, 2610.pdf
[13] Williams J.G., Boggs, D.H., Yoder C.F., Ratcliff J.T., Dickey J.O. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets, 2001, vol. 106, pp. 27933-27968.
[14] Williams J.G., Boggs D.H., Folkner W.M. DE421 Lunar Orbit, Physical Librations, and Surface Coordinates, Jet Propulsion Laboratory, Interoffice Memorandum. JPL IOM 335-JW,DB,WF-20080314-001, March 14, 2008, pp. 1-14.
[15] Morrison L.V., Ward C.G. An analysis of transits of Mercury: 1677-1973. Monthly Notices of the Royal Astronomical Society MNRAS, 1975 vol. 173, pp. 183-206.
[16] Barkin Yu.V., Ferrandiz J.M., Garcia Ferrandez M. Earth, Moon, Mercury and Titan Seismicity: Observed and Expected Phenomena. 36th Annual Lunar and Planetary Science Conference, 2005, March 14-18, League City, Texas. 2005. abstract no. 1076. 2p. http://www.lpi.usra.edu/meetings/lpsc2005/pdf/1076.pdf